A Partitioned Version of the Erdös–Szekeres Theorem for Quadrilaterals

被引:0
|
作者
Attila Póor
机构
[1] Rényi Institute of Mathematics,
[2] Hungarian Academy of Sciences,undefined
[3] PO Box 127,undefined
[4] 1364 Budapest,undefined
来源
关键词
Type Lemma; Szekeres Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a partitioned version of the Erdös–Szekeres theorem for the case $k = 4$: any finite set $X \subset \bbbr^2$ of points in general position can be partitioned into sets $X_0, X_{ij}$ where $i=1,2,3,4$ and $j=1,\ldots,26$, so that $|X_{1j}|=|X_{2j}|=|X_{3j}|=|X_{4j}|$, $|X_0|\leq 4$ and for all $j$ every transversal $\{x_1,x_2,x_3,x_4\}$, $x_1 \in X_{1j}, x_2 \in X_{2j},x_3 \in X_{3j}, x_4 \in X_{4j}$, is in convex position. In order to prove this, we show another theorem, the partitioned version of the “same type lemma”, which was proved by Bárány and Valtr.
引用
收藏
页码:321 / 336
页数:15
相关论文
共 50 条
  • [31] ON A GENERALIZATION OF A THEOREM OF ERDŐS AND FUCHS
    G. Horváth
    Acta Mathematica Hungarica, 2001, 92 : 83 - 110
  • [32] Tauberian Theorem of Erdős Revisited
    J. Korevaar
    Combinatorica, 2001, 21 : 239 - 250
  • [33] ON A THEOREM OF ERDOS AND SZEKERES
    SUBBARAO, MV
    CANADIAN MATHEMATICAL BULLETIN, 1968, 11 (04): : 597 - &
  • [34] AREA SUMMATIONS IN PARTITIONED CONVEX QUADRILATERALS
    BATMAN, D
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (06): : 666 - 668
  • [35] A spectral Erdős-Sós theorem
    Cioabă, Sebastian
    Desai, Dheer Noal
    Tait, Michael
    arXiv, 2022,
  • [36] Erdo˝s-Szekeres theorem for multidimensional arrays
    Bucic, Matija
    Sudakov, Benny
    Tran, Tuan
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (08) : 2927 - 2947
  • [37] PONCELET THEOREM FOR QUADRILATERALS
    Grozdev, Sava
    Nenkov, Veselin
    MATHEMATICS AND INFORMATICS, 2012, 55 (06): : 517 - 525
  • [38] Not quite a theorem on quadrilaterals
    不详
    AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (04): : 377 - 378
  • [39] An improvement of an extension of a theorem of Erdős and Fuchs
    G. Horváth
    Acta Mathematica Hungarica, 2004, 104 : 27 - 37
  • [40] Generalization of Erdős-Kac theorem
    Yalin Sun
    Lizhen Wu
    Frontiers of Mathematics in China, 2019, 14 : 1303 - 1316