A spectral Erdős-Sós theorem

被引:0
|
作者
Cioabă, Sebastian [1 ]
Desai, Dheer Noal [1 ]
Tait, Michael [2 ]
机构
[1] Department of Mathematical Sciences, University of Delaware, United States
[2] Department of Mathematics & Statistics, Villanova University, United States
来源
arXiv | 2022年
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Trees (mathematics)
引用
收藏
相关论文
共 50 条
  • [1] Bipartite Version of the Erd?s-Sós Conjecture
    Xinmin HOU
    Chenhui Lü
    Journal of Mathematical Research with Applications, 2019, 39 (03) : 249 - 253
  • [2] A N OTE ON THE ERDS-SS CONJECTURE
    周兵
    ActaMathematicaScientia, 1984, (03) : 287 - 289
  • [3] A NEW RESULT ON ERDS-SóS CONJECTURE
    王敏
    赵艳青
    李国君
    数学物理学报, 1997, (S1) : 125 - 131
  • [4] A spectral Erdős-Rademacher theorem
    Li, Yongtao
    Lu, Lu
    Peng, Yuejian
    ADVANCES IN APPLIED MATHEMATICS, 2024, 158
  • [5] A new approach for the Brown-Erdős-Sós problem
    Shapira, Asaf
    Tyomkyn, Mykhaylo
    ISRAEL JOURNAL OF MATHEMATICS, 2025,
  • [6] Erds-sòs猜想的一个结果
    唐干武
    赵翌
    王敏
    西南师范大学学报(自然科学版), 2009, 34 (01) : 24 - 27
  • [7] A remark on a theorem of Erdős
    J. H. Schmerl
    Acta Mathematica Hungarica, 2018, 155 : 489 - 498
  • [8] Erdős–Szekeres Theorem for Lines
    Imre Bárány
    Edgardo Roldán-Pensado
    Géza Tóth
    Discrete & Computational Geometry, 2015, 54 : 669 - 685
  • [9] ON A GENERALIZATION OF A THEOREM OF ERDŐS AND FUCHS
    G. Horváth
    Acta Mathematica Hungarica, 2001, 92 : 83 - 110
  • [10] Tauberian Theorem of Erdős Revisited
    J. Korevaar
    Combinatorica, 2001, 21 : 239 - 250