A spectral Erdős-Rademacher theorem

被引:0
|
作者
Li, Yongtao [1 ]
Lu, Lu [1 ]
Peng, Yuejian [1 ,2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R China
关键词
Extremal graph problems; Spectral radius; Counting triangles; GRAPHS; EIGENVALUES; RADIUS; NUMBER; BOUNDS;
D O I
10.1016/j.aam.2024.102720
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A classical result of Erd6s and Rademacher (1955) indicates a supersaturation phenomenon. It says that if G is a graph on n vertices with at least L n 2 / 4 ] + 1 edges, then G contains at least L n/ 2] triangles. We prove a spectral version of Erd6s- Rademacher's theorem. Moreover, Mubayi (2010) [28] extends the result of Erd6s and Rademacher from a triangle to any color -critical graph. It is interesting to study the extension of Mubayi from a spectral perspective. However, it is not apparent to measure the increment on the spectral radius of a graph comparing to the traditional edge version (Mubayi's result). In this paper, we provide a way to measure the increment on the spectral radius of a graph and propose a spectral version on the counting problems for color -critical graphs. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] On stability of the Erd's-Rademacher problem
    Balogh, Jozsef
    Clemen, Felix Christian
    ILLINOIS JOURNAL OF MATHEMATICS, 2023, 67 (01) : 1 - 11
  • [2] A note on extremal constructions for the Erdős-Rademacher problem
    Liu, Xizhi
    Pikhurko, Oleg
    COMBINATORICS PROBABILITY AND COMPUTING, 2024,
  • [3] A spectral Erdős-Sós theorem
    Cioabă, Sebastian
    Desai, Dheer Noal
    Tait, Michael
    arXiv, 2022,
  • [4] A remark on a theorem of Erdős
    J. H. Schmerl
    Acta Mathematica Hungarica, 2018, 155 : 489 - 498
  • [5] Erdős–Szekeres Theorem for Lines
    Imre Bárány
    Edgardo Roldán-Pensado
    Géza Tóth
    Discrete & Computational Geometry, 2015, 54 : 669 - 685
  • [6] ON A GENERALIZATION OF A THEOREM OF ERDŐS AND FUCHS
    G. Horváth
    Acta Mathematica Hungarica, 2001, 92 : 83 - 110
  • [7] Tauberian Theorem of Erdős Revisited
    J. Korevaar
    Combinatorica, 2001, 21 : 239 - 250
  • [8] Partial subdifferentials, derivates and Rademacher's theorem
    Bessis, DN
    Clarke, FH
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (07) : 2899 - 2926
  • [9] Rademacher's theorem on configuration spaces and applications
    Röckner, M
    Schied, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 169 (02) : 325 - 356
  • [10] A Postscript on Erds-Szekeres Theorem
    张玉琴
    苑立平
    NortheasternMathematicalJournal, 2002, (04) : 319 - 322