A Partitioned Version of the Erdös–Szekeres Theorem for Quadrilaterals

被引:0
|
作者
Attila Póor
机构
[1] Rényi Institute of Mathematics,
[2] Hungarian Academy of Sciences,undefined
[3] PO Box 127,undefined
[4] 1364 Budapest,undefined
来源
关键词
Type Lemma; Szekeres Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a partitioned version of the Erdös–Szekeres theorem for the case $k = 4$: any finite set $X \subset \bbbr^2$ of points in general position can be partitioned into sets $X_0, X_{ij}$ where $i=1,2,3,4$ and $j=1,\ldots,26$, so that $|X_{1j}|=|X_{2j}|=|X_{3j}|=|X_{4j}|$, $|X_0|\leq 4$ and for all $j$ every transversal $\{x_1,x_2,x_3,x_4\}$, $x_1 \in X_{1j}, x_2 \in X_{2j},x_3 \in X_{3j}, x_4 \in X_{4j}$, is in convex position. In order to prove this, we show another theorem, the partitioned version of the “same type lemma”, which was proved by Bárány and Valtr.
引用
收藏
页码:321 / 336
页数:15
相关论文
共 50 条
  • [41] Bipartite Version of the Erd?s-Sós Conjecture
    Xinmin HOU
    Chenhui Lü
    Journal of Mathematical Research with Applications, 2019, 39 (03) : 249 - 253
  • [42] An Erdős-Gallai Theorem for Matroids
    Sean McGuinness
    Annals of Combinatorics, 2012, 16 : 107 - 119
  • [43] The de Bruijn–Erdős theorem for hypergraphs
    Noga Alon
    Keith E. Mellinger
    Dhruv Mubayi
    Jacques Verstraëte
    Designs, Codes and Cryptography, 2012, 65 : 233 - 245
  • [44] A spectral Erdős-Rademacher theorem
    Li, Yongtao
    Lu, Lu
    Peng, Yuejian
    ADVANCES IN APPLIED MATHEMATICS, 2024, 158
  • [45] Note on the Erdos - Szekeres Theorem
    G. Tóth
    P. Valtr
    Discrete & Computational Geometry, 1998, 19 : 457 - 459
  • [46] NEW PROOF OF A THEOREM OF SZEKERES
    KHARAGHANI, H
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 40 (01) : 169 - 170
  • [47] Fast Formal Proof of the Erdős–Szekeres Conjecture for Convex Polygons with at Most 6 Points
    Filip Marić
    Journal of Automated Reasoning, 2019, 62 : 301 - 329
  • [48] An Erdős–Fuchs theorem for ordered representation functions
    Gonzalo Cao-Labora
    Juanjo Rué
    Christoph Spiegel
    The Ramanujan Journal, 2021, 56 : 183 - 201
  • [49] The Erdős–Ko–Rado Theorem for Integer Sequences
    Peter Frankl
    Norihide Tokushige
    Combinatorica, 1999, 19 : 55 - 63
  • [50] An Erdős–Gallai-Type Theorem for Keyrings
    Alexander Sidorenko
    Graphs and Combinatorics, 2018, 34 : 633 - 638