Vertex-disjoint K1 + (K1 ∪ K2) in K1,4-free graphs with minimum degree at least four

被引:0
|
作者
Yun Shu Gao
Qing Song Zou
机构
[1] Ningxia University,School of Mathematics and Computer Science
[2] Xidian University,Department of Mathematics
关键词
Forbidden graphs; Vertex-disjoint subgraphs; Minimum degree; 05C35; 05C70;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is said to be K1,4-free if it does not contain an induced subgraph isomorphic to K1,4. Let k be an integer with k ≥ 2. We prove that if G is a K1,4-free graph of order at least 11k-10 with minimum degree at least four, then G contains k vertex-disjoint copies of K1 + (K1 ∪ K2).
引用
收藏
页码:661 / 674
页数:13
相关论文
共 50 条
  • [31] Euler方程φ(xy)=k1φ(x)+k2φ(y)(k1≠k2)的正整数解
    张四保
    官春梅
    席小忠
    郑州大学学报(理学版), 2017, 49 (01) : 7 - 10
  • [32] Note on the Longest Paths in {K1,4,K1,4+e}-free Graphs
    Fang DUAN
    Guo Ping WANG
    Acta Mathematica Sinica,English Series, 2012, (12) : 2501 - 2506
  • [33] Connected even factors in {K1,l, K1,l + e}-free graphs
    Duan, Fang
    Zhang, Weijuan
    Wang, Guoping
    ARS COMBINATORIA, 2014, 115 : 385 - 389
  • [34] ALocalHlderEstimateof(K1,K2)-QuasiconformalMappingsbetweenHypersurfaces
    Shen Zhou ZHENG
    ActaMathematicaSinica, 2015, 31 (09) : 1379 - 1390
  • [35] Spanning trees with at most 3 leaves in K1,4-free graphs
    Kyaw, Aung
    DISCRETE MATHEMATICS, 2009, 309 (20) : 6146 - 6148
  • [36] Computational complexity of minimum P4 vertex cover problem for regular and K1,4-free graphs
    Devi, N. Safina
    Mane, Aniket C.
    Mishra, Sounaka
    DISCRETE APPLIED MATHEMATICS, 2015, 184 : 114 - 121
  • [37] CALCULATION OF K1 AND K2 MASS DIFFERENCE
    VAINSHTEIN, AI
    KHRIPLOV.IB
    JETP LETTERS-USSR, 1967, 5 (02): : 57 - +
  • [38] Distributions related to (k1, k2) events
    Dafnis, Spiros D.
    Antzoulakos, Demetrios L.
    Philippou, Andreas N.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (07) : 1691 - 1700
  • [39] Spanning 3-ended trees in k-connected K1,4-free graphs
    Yuan Chen
    GuanTao Chen
    ZhiQuan Hu
    Science China Mathematics, 2014, 57 : 1579 - 1586
  • [40] Spanning 3-ended trees in k-connected K1,4-free graphs
    CHEN Yuan
    CHEN GuanTao
    HU ZhiQuan
    ScienceChina(Mathematics), 2014, 57 (08) : 1579 - 1586