Vertex-disjoint K1 + (K1 ∪ K2) in K1,4-free graphs with minimum degree at least four

被引:0
|
作者
Yun Shu Gao
Qing Song Zou
机构
[1] Ningxia University,School of Mathematics and Computer Science
[2] Xidian University,Department of Mathematics
关键词
Forbidden graphs; Vertex-disjoint subgraphs; Minimum degree; 05C35; 05C70;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is said to be K1,4-free if it does not contain an induced subgraph isomorphic to K1,4. Let k be an integer with k ≥ 2. We prove that if G is a K1,4-free graph of order at least 11k-10 with minimum degree at least four, then G contains k vertex-disjoint copies of K1 + (K1 ∪ K2).
引用
收藏
页码:661 / 674
页数:13
相关论文
共 50 条
  • [21] Closure for {K1,4, K1,4 + e}-free graphs
    Ryjacek, Zdenek
    Vrana, Petr
    Wang, Shipeng
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 134 : 239 - 263
  • [22] Nucleoli in human early erythroblasts (K2, K1, K1/2 cells)
    Smetana, K
    Jirásková, I
    Klamová, H
    FOLIA BIOLOGICA, 2005, 51 (01) : 25 - 28
  • [23] Vertex disjoint copies of K1,4 in claw-free graphs
    Wang, Yun
    Jiang, Suyun
    Yan, Jin
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 393 (393)
  • [24] Hamilton paths in {K1,4, K1,4+e}-free graphs
    Lin, Houyuan
    Wang, Jianglu
    DISCRETE MATHEMATICS, 2008, 308 (18) : 4280 - 4285
  • [25] On K1 and K2 of algebraic surfaces
    Müller-Stach, S
    Saito, S
    Collino, A
    K-THEORY, 2003, 30 (01): : 37 - 69
  • [26] K2 MEASURES EXCISION FOR K1
    GELLER, SC
    WEIBEL, CA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 80 (01) : 1 - 9
  • [27] ARemarkontheExistenceofEntireLargeandBoundedSolutionstoa(k1,k2)-HessianSystemwithGradientTerm
    Dragos Patru COVEI
    Acta Mathematica Sinica, 2017, 33 (06) : 761 - 774
  • [28] The Plus Construction, K1 and K2
    Penner, Robert
    TOPOLOGY AND K-THEORY: LECTURES BY DANIEL QUILLEN, 2020, 2262 : 201 - 205
  • [29] Hamiltonicity of 2-connected {K1,4, K1,4 + e]-free graphs
    Li, R
    DISCRETE MATHEMATICS, 2004, 287 (1-3) : 69 - 76
  • [30] Note on the longest paths in {K1,4, K1,4 + e}-free graphs
    Fang Duan
    Guo Ping Wang
    Acta Mathematica Sinica, English Series, 2012, 28 : 2501 - 2506