Vertex-disjoint K1 + (K1 ∪ K2) in K1,4-free graphs with minimum degree at least four

被引:0
|
作者
Yun Shu Gao
Qing Song Zou
机构
[1] Ningxia University,School of Mathematics and Computer Science
[2] Xidian University,Department of Mathematics
关键词
Forbidden graphs; Vertex-disjoint subgraphs; Minimum degree; 05C35; 05C70;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is said to be K1,4-free if it does not contain an induced subgraph isomorphic to K1,4. Let k be an integer with k ≥ 2. We prove that if G is a K1,4-free graph of order at least 11k-10 with minimum degree at least four, then G contains k vertex-disjoint copies of K1 + (K1 ∪ K2).
引用
收藏
页码:661 / 674
页数:13
相关论文
共 50 条
  • [41] Study of the K1(1270) - K1(1400) mixing in the decays B → J/ψ K1(1270), J/ψ K1(1400)
    Zhang, Zhi-Qing
    Guo, Hongxia
    Wang, Si-Yang
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (03):
  • [42] ON DEOXYRIBONUCLEASES K1 AND K2 ISOLATED FROM MYCELIA OF ASPERGILLUS ORYZAE .I. ISOLATION AND PURIFICATION OF DNASES K1 AND K2
    KATO, M
    IKEDA, Y
    JOURNAL OF BIOCHEMISTRY, 1968, 64 (03): : 321 - &
  • [43] HAMILTONICITY FOR K1,(R)-FREE GRAPHS
    CHEN, G
    SCHELP, RH
    JOURNAL OF GRAPH THEORY, 1995, 20 (04) : 423 - 439
  • [44] On degenerate weakly (K1, K2)-quasiregular mappings
    Hongya, Gao
    Tong, Li
    ACTA MATHEMATICA SCIENTIA, 2008, 28 (01) : 163 - 170
  • [45] Regularity for weakly (K1, K2)-quasiregular mappings
    Hongya Gao
    Science in China Series A: Mathematics, 2003, 46 (4): : 499 - 505
  • [46] Regularity for weakly (K1, K2)-quasiregular mappings
    高红亚
    ScienceinChina,SerA., 2003, Ser.A.2003 (04) : 499 - 505
  • [47] Generalizations of distributions related to (k1,k2)-runs
    Kumar, A. N.
    Upadhye, N. S.
    METRIKA, 2019, 82 (02) : 249 - 268
  • [48] Graphs K1*4,5, K1*5,4, K1*4,4, K2,3,4 have the property M(3)
    Mojdeh, D. A.
    Haji, A. Ahmadi
    Ahangar, H. Abdollahzadeh
    Khodkar, Abdollah
    ARS COMBINATORIA, 2007, 84 : 171 - 190
  • [49] ON DEGENERATE WEAKLY (K1,K2)-QUASIREGULAR MAPPINGS
    高红亚
    李彤
    Acta Mathematica Scientia, 2008, (01) : 163 - 170
  • [50] Regularity for weakly (K1, K2)-quasiregular mappings
    Gao, HY
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (04): : 499 - 505