Caputo-Hadamard Fractional Differential Equations in Banach Spaces

被引:0
|
作者
Saïd Abbas
Mouffak Benchohra
Naima Hamidi
Johnny Henderson
机构
[1] Control and Applications Tahar Moulay University of Saïda,Laboratory of Mathematics, Geometry, Analysis
[2] Liabes University of Sidi Bel-Abbes,Laboratory of Mathematics Djillali
[3] Baylor University Waco,Department of Mathematics
关键词
Primary 26A33; Secondary 34A08; 34G20; fractional differential equation; partial differential equation; mixed Hadamard integral of fractional order; Caputo–Hadamard fractional derivative; existence; uniqueness; measure of noncompactness; fixed point;
D O I
暂无
中图分类号
学科分类号
摘要
This article deals with some existence results for a class of Caputo–Hadamard fractional differential equations. The results are based on the Mönch’s fixed point theorem associated with the technique of measure of noncompactness. Two illustrative examples are presented.
引用
收藏
页码:1027 / 1045
页数:18
相关论文
共 50 条
  • [21] Some results on the study of Caputo-Hadamard fractional stochastic differential equations
    Makhlouf, Abdellatif Ben
    Mchiri, Lassaad
    CHAOS SOLITONS & FRACTALS, 2022, 155
  • [22] A new scheme for the solution of the nonlinear Caputo-Hadamard fractional differential equations
    Saeed, Umer
    Rehman, Mujeeb ur
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 105 : 56 - 69
  • [23] EXISTENCE AND STABILITY FOR NONLINEAR CAPUTO-HADAMARD FRACTIONAL DELAY DIFFERENTIAL EQUATIONS
    Haoues, M.
    Ardjouni, A.
    Djoudi, A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2020, 89 (02): : 225 - 242
  • [24] On the solutions of Caputo-Hadamard Pettis-type fractional differential equations
    Cichon, Mieczyslaw
    Salem, Hussein A. H.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3031 - 3053
  • [25] An Approach for Numerical Solutions of Caputo-Hadamard Uncertain Fractional Differential Equations
    Liu, Yiyu
    Liu, Hanjie
    Zhu, Yuanguo
    FRACTAL AND FRACTIONAL, 2022, 6 (12)
  • [26] Modified Comparison Theorems for Solutions of Caputo-Hadamard Fractional Differential Equations
    Liu, Yiyu
    Zhu, Yuanguo
    Lu, Zigrang
    2022 7TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND INDUSTRY, MCSI, 2022, : 29 - 34
  • [27] Logarithmic Jacobi collocation method for Caputo-Hadamard fractional differential equations
    Zaky, Mahmoud A.
    Hendy, Ahmed S.
    Suragan, D.
    APPLIED NUMERICAL MATHEMATICS, 2022, 181 : 326 - 346
  • [28] Limit behavior of the solution of Caputo-Hadamard fractional stochastic differential equations
    Liu, Jiankang
    Wei, Wei
    Wang, Jinbin
    Xu, Wei
    APPLIED MATHEMATICS LETTERS, 2023, 140
  • [29] A variation of constant formula for Caputo-Hadamard fractional stochastic differential equations
    Li, Min
    Huang, Chengming
    Wang, Nan
    STATISTICS & PROBABILITY LETTERS, 2024, 214
  • [30] A HIGH ORDER SCHEME FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH THE CAPUTO-HADAMARD DERIVATIVE
    Ye, Xingyang
    Cao, Junying
    Xu, Chuanju
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2025, 43 (03): : 615 - 640