A variation of constant formula for Caputo-Hadamard fractional stochastic differential equations

被引:0
|
作者
Li, Min [1 ,2 ]
Huang, Chengming [3 ,4 ]
Wang, Nan [5 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Ctr Math Sci, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[4] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
[5] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Caputo-Hadamard fractional SDEs; Variation of constant formula; Mild solutions; Stability of basic test equations;
D O I
10.1016/j.spl.2024.110216
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies the existence and uniqueness of the mild solutions of Caputo-Hadamard fractional stochastic differential equations (SDEs). Subsequently, a variation of constants formula is derived for these equations. The primary proof techniques rely on It & ocirc;'s isometry, the martingale representation theorem, and the adaptation of the variation of constants formula employed in deterministic Caputo-Hadamard fractional differential equations (FDEs). Furthermore, we employ the constant variation formula to investigate the mean-square stability of a class of scalar Caputo-Hadamard fractional SDEs and provide stability criteria. Consequently, this class of scalar equations can serve as basic test equations to study the stability of numerical methods for Caputo-Hadamard fractional SDEs.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A variation of constant formula for Caputo fractional stochastic differential equations
    Anh, P. T.
    Doan, T. S.
    Huong, P. T.
    [J]. STATISTICS & PROBABILITY LETTERS, 2019, 145 : 351 - 358
  • [2] On Caputo-Hadamard fractional differential equations
    Gohar, Madiha
    Li, Changpin
    Yin, Chuntao
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (07) : 1459 - 1483
  • [3] On Caputo-Hadamard uncertain fractional differential equations
    Liu, Yiyu
    Zhu, Yuanguo
    Lu, Ziciiang
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 146
  • [4] Some results on the study of Caputo-Hadamard fractional stochastic differential equations
    Makhlouf, Abdellatif Ben
    Mchiri, Lassaad
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 155
  • [5] Limit behavior of the solution of Caputo-Hadamard fractional stochastic differential equations
    Liu, Jiankang
    Wei, Wei
    Wang, Jinbin
    Xu, Wei
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 140
  • [6] Analysis of controllability in Caputo-Hadamard stochastic fractional differential equations with fractional Brownian motion
    Lavanya, M.
    Vadivoo, B. Sundara
    [J]. INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (01) : 15 - 23
  • [7] Numerical approximation and error analysis for Caputo-Hadamard fractional stochastic differential equations
    Yang, Zhiwei
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [8] Caputo-Hadamard implicit fractional differential equations with delay
    Krim, Salim
    Abbas, Said
    Benchohra, Mouffak
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 463 - 484
  • [9] Caputo-Hadamard implicit fractional differential equations with delay
    Salim Krim
    Saïd Abbas
    Mouffak Benchohra
    [J]. São Paulo Journal of Mathematical Sciences, 2021, 15 : 463 - 484
  • [10] Well-posedness and regularity of Caputo-Hadamard fractional stochastic differential equations
    Yang, Zhiwei
    Zheng, Xiangcheng
    Wang, Hong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):