Limit behavior of the solution of Caputo-Hadamard fractional stochastic differential equations

被引:22
|
作者
Liu, Jiankang [1 ]
Wei, Wei [2 ]
Wang, Jinbin [1 ]
Xu, Wei [2 ]
机构
[1] Taiyuan Univ Sci & Technol, Sch Appl Sci, Taiyuan 030024, Peoples R China
[2] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Peoples R China
基金
中国国家自然科学基金;
关键词
Limit behavior; Averaging principle; Fractional stochastic differential; equations; Caputo-Hadamard derivative; Convergence rate;
D O I
10.1016/j.aml.2023.108586
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this letter, an averaging principle for Caputo-Hadamard fractional stochastic differential equations is established. It is showed the solution of the Caputo-Hadamard fractional stochastic differential equation converges to the solution of the averaged equation when the time scale parameter tends to zero. Compared to existing literatures, different estimates techniques are used to overcome the difficul-ties caused by the logarithmic term. It means that Khasminskii classical approach is extended to fractional stochastic differential equations of Caputo-Hadamard type.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] On Caputo-Hadamard fractional differential equations
    Gohar, Madiha
    Li, Changpin
    Yin, Chuntao
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (07) : 1459 - 1483
  • [2] On Caputo-Hadamard uncertain fractional differential equations
    Liu, Yiyu
    Zhu, Yuanguo
    Lu, Ziciiang
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 146
  • [3] Some results on the study of Caputo-Hadamard fractional stochastic differential equations
    Makhlouf, Abdellatif Ben
    Mchiri, Lassaad
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 155
  • [4] A variation of constant formula for Caputo-Hadamard fractional stochastic differential equations
    Li, Min
    Huang, Chengming
    Wang, Nan
    [J]. STATISTICS & PROBABILITY LETTERS, 2024, 214
  • [5] A new scheme for the solution of the nonlinear Caputo-Hadamard fractional differential equations
    Saeed, Umer
    Rehman, Mujeeb ur
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2024, 105 : 56 - 69
  • [6] Analysis of controllability in Caputo-Hadamard stochastic fractional differential equations with fractional Brownian motion
    Lavanya, M.
    Vadivoo, B. Sundara
    [J]. INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (01) : 15 - 23
  • [7] Numerical approximation and error analysis for Caputo-Hadamard fractional stochastic differential equations
    Yang, Zhiwei
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [8] Caputo-Hadamard implicit fractional differential equations with delay
    Krim, Salim
    Abbas, Said
    Benchohra, Mouffak
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 463 - 484
  • [9] Caputo-Hadamard implicit fractional differential equations with delay
    Salim Krim
    Saïd Abbas
    Mouffak Benchohra
    [J]. São Paulo Journal of Mathematical Sciences, 2021, 15 : 463 - 484
  • [10] Well-posedness and regularity of Caputo-Hadamard fractional stochastic differential equations
    Yang, Zhiwei
    Zheng, Xiangcheng
    Wang, Hong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):