On the solutions of Caputo-Hadamard Pettis-type fractional differential equations

被引:17
|
作者
Cichon, Mieczyslaw [1 ]
Salem, Hussein A. H. [2 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, Poznan, Poland
[2] Alexandria Univ, Fac Sci, Dept Math & Comp Sci, Alexandria, Egypt
关键词
Fractional calculus; Pettis integral; Orlicz space; BANACH-SPACES; INTEGRATION; CALCULUS;
D O I
10.1007/s13398-019-00671-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a Banach space with the topological dual E *. The aim of this paper is two-fold. On the one hand, we prove some basic properties of Hadamard-type fractional integral operators. These results are related to earlier results about integral operators acting on different function spaces, but for the vector-valued case they are of independent interest. Note that we discuss it in a rather general setting. We study Hadamard-Pettis integral operators in both single and multivalued case. On the other hand, we apply these results to obtain the existence of solutions of the fractional-type problem dax(t)/ dta =. f (t, x(t)), a. (0, 1), t. [1, e], x(1) + bx(e) = h with certain constants., b, where h. E and f : [1, e] xE. E is Pettis integrable function such that, for every.. E *,. f lies in an appropriate Orlicz spaces. Here da dta stands the Caputo-Hadamard fractional differential operator.
引用
收藏
页码:3031 / 3053
页数:23
相关论文
共 50 条
  • [1] On the solutions of Caputo–Hadamard Pettis-type fractional differential equations
    Mieczysław Cichoń
    Hussein A. H. Salem
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3031 - 3053
  • [2] On Caputo-Hadamard fractional differential equations
    Gohar, Madiha
    Li, Changpin
    Yin, Chuntao
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (07) : 1459 - 1483
  • [3] On Caputo-Hadamard uncertain fractional differential equations
    Liu, Yiyu
    Zhu, Yuanguo
    Lu, Ziciiang
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 146
  • [4] Modified Comparison Theorems for Solutions of Caputo-Hadamard Fractional Differential Equations
    Liu, Yiyu
    Zhu, Yuanguo
    Lu, Zigrang
    [J]. 2022 7TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND INDUSTRY, MCSI, 2022, : 29 - 34
  • [5] An Approach for Numerical Solutions of Caputo-Hadamard Uncertain Fractional Differential Equations
    Liu, Yiyu
    Liu, Hanjie
    Zhu, Yuanguo
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (12)
  • [6] Caputo-Hadamard implicit fractional differential equations with delay
    Krim, Salim
    Abbas, Said
    Benchohra, Mouffak
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 463 - 484
  • [7] Caputo-Hadamard implicit fractional differential equations with delay
    Salim Krim
    Saïd Abbas
    Mouffak Benchohra
    [J]. São Paulo Journal of Mathematical Sciences, 2021, 15 : 463 - 484
  • [8] Fitted schemes for Caputo-Hadamard fractional differential equations
    Ou, Caixia
    Cen, Dakang
    Wang, Zhibo
    Vong, Seakweng
    [J]. NUMERICAL ALGORITHMS, 2024, 97 (01) : 135 - 164
  • [9] COMPARISON THEOREMS FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS
    Ma, Li
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (03)
  • [10] CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES
    Abbas, Said
    Benchohra, Mouffak
    Hamidi, Naima
    Henderson, Johnny
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (04) : 1027 - 1045