Modified Comparison Theorems for Solutions of Caputo-Hadamard Fractional Differential Equations

被引:0
|
作者
Liu, Yiyu [1 ]
Zhu, Yuanguo [1 ]
Lu, Zigrang [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Audit Univ, Sch Stat & Data Sci, Nanjing 211815, Jiangsu, Peoples R China
关键词
Caputo-Hadamard fractional derivative; Comparison theorem; Fractional differential equation;
D O I
10.1109/MCSI55933.2022.00011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we primarily focus on modifying comparison theorems with strict and nonstrict inequalities for Caputo-Hadamard fractional differential equations (FDEs). First, we point out that the proof of comparison theorem for Caputo-Hadamard FDEs in the paper (Fractals 2019, 27(3), 1950036) is incorrect. And then, we give a modified comparison theorem for solutions of Caputo-Hadamard FDEs of order p is an element of (0, 1) under strict inequalities, then extend order p to arbitrary positive-order. Finally, we present a modified comparison theorem with nonstrict inequalities for solutions of Caputo-Hadamard FDEs.
引用
收藏
页码:29 / 34
页数:6
相关论文
共 50 条
  • [1] COMPARISON THEOREMS FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS
    Ma, Li
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (03)
  • [2] On Caputo-Hadamard fractional differential equations
    Gohar, Madiha
    Li, Changpin
    Yin, Chuntao
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (07) : 1459 - 1483
  • [3] On Caputo-Hadamard uncertain fractional differential equations
    Liu, Yiyu
    Zhu, Yuanguo
    Lu, Ziciiang
    CHAOS SOLITONS & FRACTALS, 2021, 146
  • [4] On the solutions of Caputo-Hadamard Pettis-type fractional differential equations
    Cichon, Mieczyslaw
    Salem, Hussein A. H.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3031 - 3053
  • [5] An Approach for Numerical Solutions of Caputo-Hadamard Uncertain Fractional Differential Equations
    Liu, Yiyu
    Liu, Hanjie
    Zhu, Yuanguo
    FRACTAL AND FRACTIONAL, 2022, 6 (12)
  • [6] Caputo-Hadamard implicit fractional differential equations with delay
    Krim, Salim
    Abbas, Said
    Benchohra, Mouffak
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 463 - 484
  • [7] Caputo-Hadamard implicit fractional differential equations with delay
    Salim Krim
    Saïd Abbas
    Mouffak Benchohra
    São Paulo Journal of Mathematical Sciences, 2021, 15 : 463 - 484
  • [8] THE PARAREAL ALGORITHM FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS
    He, Tingting
    Lu, Jian
    Li, Min
    COMMUNICATIONS ON ANALYSIS AND COMPUTATION, 2024, 2 (04): : 432 - 453
  • [9] Caputo-Hadamard Fractional Differential Equations in Banach Spaces
    Saïd Abbas
    Mouffak Benchohra
    Naima Hamidi
    Johnny Henderson
    Fractional Calculus and Applied Analysis, 2018, 21 : 1027 - 1045
  • [10] CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES
    Abbas, Said
    Benchohra, Mouffak
    Hamidi, Naima
    Henderson, Johnny
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (04) : 1027 - 1045