The noncommutative KdV equation and its para-Kähler structure

被引:0
|
作者
Qing Ding
ZhiZhou He
机构
[1] Fudan University,School of Mathematical Sciences
来源
Science China Mathematics | 2014年 / 57卷
关键词
para-Kähler structure; noncommutative KdV; geometric realization; 37K25; 37K10; 53C44; 58G30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the noncommutative (n × n)-matrix KdV equation is exactly a reduction of the geometric KdV flows from ℝ to the symmetric para-Grassmannian manifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde G_{2n,n} $\end{document} = SL(2n, ℝ)/SL(n, ℝ) × SL(n, ℝ) and it can also be realized geometrically as a motion of Sym-Pohlmeyer curves in the symmetric Lie algebra sl(2n, ℝ) with initial data being suitably restricted. This gives a para-geometric characterization of the noncommutative matrix KdV equation.
引用
收藏
页码:1505 / 1516
页数:11
相关论文
共 50 条
  • [1] The noncommutative KdV equation and its para-Khler structure
    DING Qing
    HE ZhiZhou
    ScienceChina(Mathematics), 2014, 57 (07) : 1505 - 1516
  • [2] The noncommutative KdV equation and its para-Kahler structure
    Ding Qing
    He ZhiZhou
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (07) : 1505 - 1516
  • [3] On semisymmetric para-Kähler manifolds
    F. Defever
    R. Deszcz
    L. Verstraelen
    Acta Mathematica Hungarica, 1997, 74 : 7 - 17
  • [4] Locally conformally flat Kähler and para-Kähler manifolds
    M. Ferreiro-Subrido
    E. García-Río
    R. Vázquez-Lorenzo
    Annals of Global Analysis and Geometry, 2021, 59 : 483 - 500
  • [5] Affine Surfaces Which are Kähler, Para-Kähler, or Nilpotent Kähler
    E. Calviño-Louzao
    E. García-Río
    P. Gilkey
    I. Gutiérrez-Rodríguez
    R. Vázquez-Lorenzo
    Results in Mathematics, 2018, 73
  • [6] Geometry of four-dimensional Kähler and para-Kähler Lie groups
    Ferreiro-Subrido, M.
    Garcia-Rio, E.
    Vazquez-Lorenzo, R.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (02)
  • [7] A para-Kähler structure in the space of oriented geodesics in a real space form
    Nikos Georgiou
    Journal of Geometry, 2020, 111
  • [8] A canonical structure on the tangent bundle of a pseudo- or para-Kähler manifold
    Henri Anciaux
    Pascal Romon
    Monatshefte für Mathematik, 2014, 174 : 329 - 355
  • [9] COMPLEX AND REAL PARA-KÄHLER EINSTEIN SPACES
    Chudecki, Adam
    Acta Physica Polonica B, Proceedings Supplement, 2023, 16 (06):
  • [10] PARA-KÄHLER AND PSEUDO-KÄHLER STRUCTURES ON LIE-YAMAGUTI ALGEBRAS
    Zhao, Jia
    Feng, Yuqin
    Qiao, And Y.U.
    arXiv, 2023,