Locally conformally flat Kähler and para-Kähler manifolds

被引:0
|
作者
M. Ferreiro-Subrido
E. García-Río
R. Vázquez-Lorenzo
机构
[1] University of Santiago de Compostela,Faculty of Mathematics
[2] IES de Ribadeo Dionisio Gamallo,Department of Mathematics
来源
关键词
Kähler and para-Kähler surface; conformal flatness; Walker structure; Riemannian extension; affine surface;
D O I
暂无
中图分类号
学科分类号
摘要
We complete the classification of locally conformally flat Kähler and para-Kähler manifolds, describing all possible non-flat curvature models for Kähler and para-Kähler surfaces.
引用
收藏
页码:483 / 500
页数:17
相关论文
共 50 条
  • [1] On semisymmetric para-Kähler manifolds
    F. Defever
    R. Deszcz
    L. Verstraelen
    Acta Mathematica Hungarica, 1997, 74 : 7 - 17
  • [2] Conical Ricci-flat nearly para-Kähler manifolds
    Lars Schäfer
    Annals of Global Analysis and Geometry, 2014, 45 : 11 - 24
  • [3] On toric locally conformally Kähler manifolds
    Farid Madani
    Andrei Moroianu
    Mihaela Pilca
    Annals of Global Analysis and Geometry, 2017, 51 : 401 - 417
  • [4] Transformations of locally conformally Kähler manifolds
    Andrei Moroianu
    Liviu Ornea
    manuscripta mathematica, 2009, 130 : 93 - 100
  • [5] Affine Surfaces Which are Kähler, Para-Kähler, or Nilpotent Kähler
    E. Calviño-Louzao
    E. García-Río
    P. Gilkey
    I. Gutiérrez-Rodríguez
    R. Vázquez-Lorenzo
    Results in Mathematics, 2018, 73
  • [6] On harmonic symmetries for locally conformally Kähler manifolds
    Teng Huang
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 2241 - 2259
  • [7] Isometric immersions of locally conformally Kähler manifolds
    Daniele Angella
    Michela Zedda
    Annals of Global Analysis and Geometry, 2019, 56 : 37 - 55
  • [8] Holomorphic submersions of locally conformally Kähler manifolds
    Liviu Ornea
    Maurizio Parton
    Victor Vuletescu
    Annali di Matematica Pura ed Applicata (1923 -), 2014, 193 : 1345 - 1351
  • [9] Geometry of four-dimensional Kähler and para-Kähler Lie groups
    Ferreiro-Subrido, M.
    Garcia-Rio, E.
    Vazquez-Lorenzo, R.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (02)
  • [10] Hopf surfaces in locally conformally Kähler manifolds with potential
    Liviu Ornea
    Misha Verbitsky
    Geometriae Dedicata, 2020, 207 : 219 - 226