On semisymmetric para-Kähler manifolds

被引:0
|
作者
F. Defever
R. Deszcz
L. Verstraelen
机构
[1] Katholieke Universiteit Leuven,Instituut Voor Theoretische Fysica
[2] Akademia Rolnicza,Katedra Matematyki
[3] Toegepaste Differentiaalmeetkunde,Afdeling Voor Zuivere En
来源
关键词
Scalar Curvature; Curvature Tensor; Shape Operator; Hermitian Manifold; Constant Sectional Curvature;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:7 / 17
页数:10
相关论文
共 50 条
  • [1] Locally conformally flat Kähler and para-Kähler manifolds
    M. Ferreiro-Subrido
    E. García-Río
    R. Vázquez-Lorenzo
    Annals of Global Analysis and Geometry, 2021, 59 : 483 - 500
  • [2] Conical Ricci-flat nearly para-Kähler manifolds
    Lars Schäfer
    Annals of Global Analysis and Geometry, 2014, 45 : 11 - 24
  • [3] Affine Surfaces Which are Kähler, Para-Kähler, or Nilpotent Kähler
    E. Calviño-Louzao
    E. García-Río
    P. Gilkey
    I. Gutiérrez-Rodríguez
    R. Vázquez-Lorenzo
    Results in Mathematics, 2018, 73
  • [4] Geometry of four-dimensional Kähler and para-Kähler Lie groups
    Ferreiro-Subrido, M.
    Garcia-Rio, E.
    Vazquez-Lorenzo, R.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (02)
  • [5] COMPLEX AND REAL PARA-KÄHLER EINSTEIN SPACES
    Chudecki, Adam
    Acta Physica Polonica B, Proceedings Supplement, 2023, 16 (06):
  • [6] The noncommutative KdV equation and its para-Khler structure
    DING Qing
    HE ZhiZhou
    ScienceChina(Mathematics), 2014, 57 (07) : 1505 - 1516
  • [7] The noncommutative KdV equation and its para-Kähler structure
    Qing Ding
    ZhiZhou He
    Science China Mathematics, 2014, 57 : 1505 - 1516
  • [8] Para-Kähler-Einstein 4-manifolds and non-integrable twistor distributions
    Gil Bor
    Omid Makhmali
    Paweł Nurowski
    Geometriae Dedicata, 2022, 216
  • [9] PARA-KÄHLER AND PSEUDO-KÄHLER STRUCTURES ON LIE-YAMAGUTI ALGEBRAS
    Zhao, Jia
    Feng, Yuqin
    Qiao, And Y.U.
    arXiv, 2023,
  • [10] Mean curvature flow of space-like Lagrangian submanifolds in almost para-Kähler manifolds
    Mykhaylo Chursin
    Lars Schäfer
    Knut Smoczyk
    Calculus of Variations and Partial Differential Equations, 2011, 41 : 111 - 125