Locally conformally flat Kähler and para-Kähler manifolds

被引:0
|
作者
M. Ferreiro-Subrido
E. García-Río
R. Vázquez-Lorenzo
机构
[1] University of Santiago de Compostela,Faculty of Mathematics
[2] IES de Ribadeo Dionisio Gamallo,Department of Mathematics
来源
关键词
Kähler and para-Kähler surface; conformal flatness; Walker structure; Riemannian extension; affine surface;
D O I
暂无
中图分类号
学科分类号
摘要
We complete the classification of locally conformally flat Kähler and para-Kähler manifolds, describing all possible non-flat curvature models for Kähler and para-Kähler surfaces.
引用
收藏
页码:483 / 500
页数:17
相关论文
共 50 条
  • [21] COMPLEX AND REAL PARA-KÄHLER EINSTEIN SPACES
    Chudecki, Adam
    Acta Physica Polonica B, Proceedings Supplement, 2023, 16 (06):
  • [22] Conformally Einstein products and nearly Kähler manifolds
    Andrei Moroianu
    Liviu Ornea
    Annals of Global Analysis and Geometry, 2008, 33 : 11 - 18
  • [23] The noncommutative KdV equation and its para-Khler structure
    DING Qing
    HE ZhiZhou
    ScienceChina(Mathematics), 2014, 57 (07) : 1505 - 1516
  • [24] The noncommutative KdV equation and its para-Kähler structure
    Qing Ding
    ZhiZhou He
    Science China Mathematics, 2014, 57 : 1505 - 1516
  • [25] Coverings of locally conformally Kähler complex spaces
    Ovidiu Preda
    Miron Stanciu
    Mathematische Zeitschrift, 2021, 298 : 639 - 651
  • [26] Locally conformal Kähler manifolds with potential
    Liviu Ornea
    Misha Verbitsky
    Mathematische Annalen, 2010, 348 : 25 - 33
  • [27] Locally homogeneous nearly Kähler manifolds
    V. Cortés
    J. J. Vásquez
    Annals of Global Analysis and Geometry, 2015, 48 : 269 - 294
  • [28] CR Embeddings and Kähler Manifolds with Pseudo-Conformally Flat Curvature Tensors
    Xiaojun Huang
    Shanyu Ji
    Brandon Lee
    The Journal of Geometric Analysis, 2014, 24 : 1912 - 1928
  • [29] On Certain Kähler Quotients of Quaternionic Kähler Manifolds
    V. Cortés
    J. Louis
    P. Smyth
    H. Triendl
    Communications in Mathematical Physics, 2013, 317 : 787 - 816
  • [30] Conification of Kähler and Hyper-Kähler Manifolds
    D. V. Alekseevsky
    V. Cortés
    T. Mohaupt
    Communications in Mathematical Physics, 2013, 324 : 637 - 655