Doubly Robust Estimation of Optimal Dynamic Treatment Regimes

被引:15
|
作者
Barrett J.K. [1 ]
Henderson R. [2 ]
Rosthøj S. [3 ]
机构
[1] MRC Biostatistics Unit, Institute of Public Health, University Forvie Site, Robinson Way, Cambridge
[2] School of Mathematics and Statistics, University of Newcastle, Newcastle upon Tyne
[3] Department of Biostatistics, Institute of Public Health, University of Copenhagen, Copenhagen
基金
英国医学研究理事会;
关键词
Causal inference; Dynamic treatment regimes; G-estimation; Regret-regression;
D O I
10.1007/s12561-013-9097-6
中图分类号
学科分类号
摘要
We compare methods for estimating optimal dynamic decision rules from observational data, with particular focus on estimating the regret functions defined by Murphy (in J. R. Stat. Soc., Ser. B, Stat. Methodol. 65:331–355, 2003). We formulate a doubly robust version of the regret-regression approach of Almirall et al. (in Biometrics 66:131–139, 2010) and Henderson et al. (in Biometrics 66:1192–1201, 2010) and demonstrate that it is equivalent to a reduced form of Robins’ efficient g-estimation procedure (Robins, in Proceedings of the Second Symposium on Biostatistics. Springer, New York, pp. 189–326, 2004). Simulation studies suggest that while the regret-regression approach is most efficient when there is no model misspecification, in the presence of misspecification the efficient g-estimation procedure is more robust. The g-estimation method can be difficult to apply in complex circumstances, however. We illustrate the ideas and methods through an application on control of blood clotting time for patients on long term anticoagulation. © 2013, The Author(s).
引用
收藏
页码:244 / 260
页数:16
相关论文
共 50 条
  • [41] Doubly Robust Estimation of Causal Effects
    Funk, Michele Jonsson
    Westreich, Daniel
    Wiesen, Chris
    Stuermer, Til
    Brookhart, M. Alan
    Davidian, Marie
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 (07) : 761 - 767
  • [42] Doubly robust estimation of attributable fractions
    Sjolander, Arvid
    Vansteelandt, Stijn
    BIOSTATISTICS, 2011, 12 (01) : 112 - 121
  • [43] On doubly robust estimation of the hazard difference
    Dukes, Oliver
    Martinussen, Torben
    Tchetgen, Eric J. Tchetgen
    Vansteelandt, Stijn
    BIOMETRICS, 2019, 75 (01) : 100 - 109
  • [44] Model selection for G-estimation of dynamic treatment regimes
    Wallace, Michael P.
    Moodie, Erica E. M.
    Stephens, David A.
    BIOMETRICS, 2019, 75 (04) : 1205 - 1215
  • [45] Parametrically Robust Dynamic Speed Estimation Based Control for Doubly Fed Induction Generator
    Bhattarai, Rojan
    Gurung, Niroj
    Ghosh, Sudipta
    Kamalasadan, Sukumar
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2018, 54 (06) : 6529 - 6542
  • [46] Parametrically Robust Dynamic Speed Estimation Based Control for Doubly Fed Induction Generator
    Bhattarai, Rojan
    Gurung, Niroj
    Ghosh, Sudipta
    Kamalasadan, Sukumar
    2017 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 2017,
  • [47] Estimation for optimal treatment regimes with survival data under semiparametric model
    Fang, Yuexin
    Zhou, Yong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (04) : 883 - 894
  • [48] Non-parametric methods for doubly robust estimation of continuous treatment effects
    Kennedy, Edward H.
    Ma, Zongming
    McHugh, Matthew D.
    Small, Dylan S.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (04) : 1229 - 1245
  • [49] A robust covariate-balancing method for learning optimal individualized treatment regimes
    Li, Canhui
    Zeng, Donglin
    Zhu, Wensheng
    BIOMETRIKA, 2024,
  • [50] Accountable survival contrast-learning for optimal dynamic treatment regimes
    Choi, Taehwa
    Lee, Hyunjun
    Choi, Sangbum
    SCIENTIFIC REPORTS, 2023, 13 (01):