On doubly robust estimation of the hazard difference

被引:18
|
作者
Dukes, Oliver [1 ]
Martinussen, Torben [2 ]
Tchetgen, Eric J. Tchetgen [3 ]
Vansteelandt, Stijn [1 ]
机构
[1] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281 S9, B-9000 Ghent, Belgium
[2] Univ Copenhagen, Dept Biostat, Oster Farimagsgade 5B, DK-1014 Copenhagen K, Denmark
[3] Univ Penn, Wharton Sch, Dept Stat, 3730 Walnut St, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
Additive hazards model; Causal inference; Doubly robust estimation; Lifetime and survival analysis; Semiparametric inference; MODELS; NONCOMPLIANCE; INFERENCE;
D O I
10.1111/biom.12943
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The estimation of conditional treatment effects in an observational study with a survival outcome typically involves fitting a hazards regression model adjusted for a high-dimensional covariate. Standard estimation of the treatment effect is then not entirely satisfactory, as the misspecification of the effect of this covariate may induce a large bias. Such misspecification is a particular concern when inferring the hazard difference, because it is difficult to postulate additive hazards models that guarantee non-negative hazards over the entire observed covariate range. We therefore consider a novel class of semiparametric additive hazards models which leave the effects of covariates unspecified. The efficient score under this model is derived. We then propose two different estimation approaches for the hazard difference (and hence also the relative chance of survival), both of which yield estimators that are doubly robust. The approaches are illustrated using simulation studies and data on right heart catheterization and mortality from the SUPPORT study.
引用
收藏
页码:100 / 109
页数:10
相关论文
共 50 条
  • [1] Doubly robust estimation of the hazard difference for competing risks data
    Rava, Denise
    Xu, Ronghui
    [J]. STATISTICS IN MEDICINE, 2023, 42 (06) : 799 - 814
  • [2] Doubly Robust and Efficient Estimation of Marginal Structural Models for the Hazard Function
    Zheng, Wenjing
    Petersen, Maya
    van der Laan, Mark J.
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2016, 12 (01): : 233 - 252
  • [3] Doubly Robust Estimation of Standardized Risk Difference and Ratio in the Exposed Population
    Shinozaki, Tomohiro
    Matsuyama, Yutaka
    [J]. EPIDEMIOLOGY, 2015, 26 (06) : 873 - 877
  • [4] Doubly robust difference-in-differences estimators
    Sant'Anna, Pedro H. C.
    Zhao, Jun
    [J]. JOURNAL OF ECONOMETRICS, 2020, 219 (01) : 101 - 122
  • [5] Doubly robust estimation of attributable fractions
    Sjolander, Arvid
    Vansteelandt, Stijn
    [J]. BIOSTATISTICS, 2011, 12 (01) : 112 - 121
  • [6] Doubly Robust Estimation of Causal Effects
    Funk, Michele Jonsson
    Westreich, Daniel
    Wiesen, Chris
    Stuermer, Til
    Brookhart, M. Alan
    Davidian, Marie
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 (07) : 761 - 767
  • [7] Approximated Doubly Robust Search Relevance Estimation
    Zou, Lixin
    Hao, Changying
    Cai, Hengyi
    Wang, Shuaiqiang
    Cheng, Suqi
    Cheng, Zhicong
    Ye, Wenwen
    Gu, Simiu
    Yin, Dawei
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 3756 - 3765
  • [8] Doubly robust estimation of the generalized impact fraction
    Taguri, Masataka
    Matsuyama, Yutaka
    Ohashi, Yasuo
    Harada, Akiko
    Ueshima, Hirotsugu
    [J]. BIOSTATISTICS, 2012, 13 (03) : 455 - 467
  • [9] Semiparametric Bayesian doubly robust causal estimation
    Luo, Yu
    Graham, Daniel J.
    McCoy, Emma J.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2023, 225 : 171 - 187
  • [10] Doubly Robust Estimation of Optimal Dosing Strategies
    Schulz, Juliana
    Moodie, Erica E. M.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (533) : 256 - 268