Doubly Robust Estimation of Optimal Dynamic Treatment Regimes

被引:15
|
作者
Barrett J.K. [1 ]
Henderson R. [2 ]
Rosthøj S. [3 ]
机构
[1] MRC Biostatistics Unit, Institute of Public Health, University Forvie Site, Robinson Way, Cambridge
[2] School of Mathematics and Statistics, University of Newcastle, Newcastle upon Tyne
[3] Department of Biostatistics, Institute of Public Health, University of Copenhagen, Copenhagen
基金
英国医学研究理事会;
关键词
Causal inference; Dynamic treatment regimes; G-estimation; Regret-regression;
D O I
10.1007/s12561-013-9097-6
中图分类号
学科分类号
摘要
We compare methods for estimating optimal dynamic decision rules from observational data, with particular focus on estimating the regret functions defined by Murphy (in J. R. Stat. Soc., Ser. B, Stat. Methodol. 65:331–355, 2003). We formulate a doubly robust version of the regret-regression approach of Almirall et al. (in Biometrics 66:131–139, 2010) and Henderson et al. (in Biometrics 66:1192–1201, 2010) and demonstrate that it is equivalent to a reduced form of Robins’ efficient g-estimation procedure (Robins, in Proceedings of the Second Symposium on Biostatistics. Springer, New York, pp. 189–326, 2004). Simulation studies suggest that while the regret-regression approach is most efficient when there is no model misspecification, in the presence of misspecification the efficient g-estimation procedure is more robust. The g-estimation method can be difficult to apply in complex circumstances, however. We illustrate the ideas and methods through an application on control of blood clotting time for patients on long term anticoagulation. © 2013, The Author(s).
引用
下载
收藏
页码:244 / 260
页数:16
相关论文
共 50 条
  • [21] Doubly robust estimation of the local average treatment effect curve
    Ogburn, Elizabeth L.
    Rotnitzky, Andrea
    Robins, James M.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (02) : 373 - 396
  • [22] Optimal treatment regimes for survival endpoints using a locally-efficient doubly-robust estimator from a classification perspective
    Bai, Xiaofei
    Tsiatis, Anastasios A.
    Lu, Wenbin
    Song, Rui
    LIFETIME DATA ANALYSIS, 2017, 23 (04) : 585 - 604
  • [23] Optimal treatment regimes for survival endpoints using a locally-efficient doubly-robust estimator from a classification perspective
    Xiaofei Bai
    Anastasios A. Tsiatis
    Wenbin Lu
    Rui Song
    Lifetime Data Analysis, 2017, 23 : 585 - 604
  • [24] Optimal Dynamic Treatment Regimes and Partial Welfare Ordering
    Han, Sukjin
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023,
  • [25] Optimal dynamic treatment regimes - Discussion on the paper by Murphy
    Arjas, E
    Jennison, C
    Dawid, AP
    Cox, DR
    Cowell, RG
    Didelez, V
    Gill, RD
    Kadane, JB
    Robins, JM
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 : 355 - 366
  • [26] Estimating Optimal Dynamic Treatment Regimes With Survival Outcomes
    Simoneau, Gabrielle
    Moodie, Erica E. M.
    Nijjar, Jagtar S.
    Platt, Robert W.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (531) : 1531 - 1539
  • [27] Regret-Regression for Optimal Dynamic Treatment Regimes
    Henderson, Robin
    Ansell, Phil
    Alshibani, Deyadeen
    BIOMETRICS, 2010, 66 (04) : 1192 - 1201
  • [28] Bayesian inference for optimal dynamic treatment regimes in practice
    Duque, Daniel Rodriguez
    Moodie, Erica E. M.
    Stephens, David A. A.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2023, 19 (02): : 309 - 331
  • [29] Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content
    Orellana, Liliana
    Rotnitzky, Andrea
    Robins, James M.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (02):
  • [30] Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part II: Proofs of Results
    Orellana, Liliana
    Rotnitzky, Andrea
    Robins, James M.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (02):