Doubly Robust Estimation of Optimal Dynamic Treatment Regimes

被引:15
|
作者
Barrett J.K. [1 ]
Henderson R. [2 ]
Rosthøj S. [3 ]
机构
[1] MRC Biostatistics Unit, Institute of Public Health, University Forvie Site, Robinson Way, Cambridge
[2] School of Mathematics and Statistics, University of Newcastle, Newcastle upon Tyne
[3] Department of Biostatistics, Institute of Public Health, University of Copenhagen, Copenhagen
基金
英国医学研究理事会;
关键词
Causal inference; Dynamic treatment regimes; G-estimation; Regret-regression;
D O I
10.1007/s12561-013-9097-6
中图分类号
学科分类号
摘要
We compare methods for estimating optimal dynamic decision rules from observational data, with particular focus on estimating the regret functions defined by Murphy (in J. R. Stat. Soc., Ser. B, Stat. Methodol. 65:331–355, 2003). We formulate a doubly robust version of the regret-regression approach of Almirall et al. (in Biometrics 66:131–139, 2010) and Henderson et al. (in Biometrics 66:1192–1201, 2010) and demonstrate that it is equivalent to a reduced form of Robins’ efficient g-estimation procedure (Robins, in Proceedings of the Second Symposium on Biostatistics. Springer, New York, pp. 189–326, 2004). Simulation studies suggest that while the regret-regression approach is most efficient when there is no model misspecification, in the presence of misspecification the efficient g-estimation procedure is more robust. The g-estimation method can be difficult to apply in complex circumstances, however. We illustrate the ideas and methods through an application on control of blood clotting time for patients on long term anticoagulation. © 2013, The Author(s).
引用
下载
收藏
页码:244 / 260
页数:16
相关论文
共 50 条
  • [11] Demystifying optimal dynamic treatment regimes
    Moodie, Erica E. M.
    Richardson, Thomas S.
    Stephens, David A.
    BIOMETRICS, 2007, 63 (02) : 447 - 455
  • [12] Model Checking with Residuals for g-estimation of Optimal Dynamic Treatment Regimes
    Rich, Benjamin
    Moodie, Erica E. M.
    Stephens, David A.
    Platt, Robert W.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (02):
  • [13] Finite sample variance estimation for optimal dynamic treatment regimes of survival outcomes
    Simoneau, Gabrielle
    Moodie, Erica E. M.
    Nijjar, Jagtar S.
    Platt, Robert W.
    STATISTICS IN MEDICINE, 2020, 39 (29) : 4466 - 4479
  • [14] Bayesian likelihood-based regression for estimation of optimal dynamic treatment regimes
    Yu, Weichang
    Bondell, Howard D.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (03) : 551 - 574
  • [15] A Robust Method for Estimating Optimal Treatment Regimes
    Zhang, Baqun
    Tsiatis, Anastasios A.
    Laber, Eric B.
    Davidian, Marie
    BIOMETRICS, 2012, 68 (04) : 1010 - 1018
  • [16] Doubly-Robust Dynamic Treatment Regimen Estimation Via Weighted Least Squares
    Wallace, Michael P.
    Moodie, Erica E. M.
    BIOMETRICS, 2015, 71 (03) : 636 - 644
  • [17] Safe and Interpretable Estimation of Optimal Treatment Regimes
    Parikh, Harsh
    Lanners, Quinn
    Akras, Zade
    Zafar, Sahar F.
    Westover, M. Brandon
    Rudin, Cynthia
    Volfovsky, Alexander
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [18] DOUBLY ROBUST TREATMENT EFFECT ESTIMATION WITH MISSING ATTRIBUTES
    Mayer, Imke
    Sverdrup, Erik
    Gauss, Tobias
    Moyer, Jean-Denis
    Wager, Stefan
    Josse, Julie
    ANNALS OF APPLIED STATISTICS, 2020, 14 (03): : 1409 - 1431
  • [19] A workshop introducing doubly robust estimation of treatment effects
    Funk, Michele Jonsson
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2007, 16 : S78 - S78
  • [20] Doubly Robust Interval Estimation for Optimal Policy Evaluation in Online Learning
    Shen, Ye
    Cai, Hengrui
    Song, Rui
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024,