Model Checking with Residuals for g-estimation of Optimal Dynamic Treatment Regimes

被引:19
|
作者
Rich, Benjamin [1 ]
Moodie, Erica E. M. [1 ]
Stephens, David A. [1 ]
Platt, Robert W. [1 ]
机构
[1] McGill Univ, Montreal, PQ H3A 2T5, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
dynamic treatment regimes; optimal dynamic regimes; g-estimation; model checking; residuals; VARIABLE SELECTION;
D O I
10.2202/1557-4679.1210
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we discuss model checking with residual diagnostic plots for g-estimation of optimal dynamic treatment regimes. The g-estimation method requires three different model specifications at each treatment interval under consideration: (1) the blip model; (2) the expected counterfactual model; and (3) the propensity model. Of these, the expected counterfactual model is especially difficult to specify correctly in practice and so far there has been little guidance as to how to check for model misspecification. Residual plots are a useful and standard tool for model diagnostics in the classical regression setting; we have adapted this approach for g-estimation. We demonstrate the usefulness of our approach in a simulation study, and apply it to real data in the context of estimating the optimal time to stop breastfeeding.
引用
下载
收藏
页数:24
相关论文
共 50 条
  • [1] Model selection for G-estimation of dynamic treatment regimes
    Wallace, Michael P.
    Moodie, Erica E. M.
    Stephens, David A.
    BIOMETRICS, 2019, 75 (04) : 1205 - 1215
  • [2] Estimation of optimal dynamic treatment regimes
    Zhao, Ying-Qi
    Laber, Eric B.
    CLINICAL TRIALS, 2014, 11 (04) : 400 - 407
  • [3] Doubly Robust Estimation of Optimal Dynamic Treatment Regimes
    Barrett J.K.
    Henderson R.
    Rosthøj S.
    Statistics in Biosciences, 2014, 6 (2) : 244 - 260
  • [4] Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions
    Zhang, Baqun
    Tsiatis, Anastasios A.
    Laber, Eric B.
    Davidian, Marie
    BIOMETRIKA, 2013, 100 (03) : 681 - 694
  • [6] Outcome trajectory estimation for optimal dynamic treatment regimes with repeated measures
    Zhang, Yuan
    Vock, David M.
    Patrick, Megan E.
    Finestack, Lizbeth H.
    Murray, Thomas A.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2023, 72 (04) : 976 - 991
  • [7] Demystifying optimal dynamic treatment regimes
    Moodie, Erica E. M.
    Richardson, Thomas S.
    Stephens, David A.
    BIOMETRICS, 2007, 63 (02) : 447 - 455
  • [8] Finite sample variance estimation for optimal dynamic treatment regimes of survival outcomes
    Simoneau, Gabrielle
    Moodie, Erica E. M.
    Nijjar, Jagtar S.
    Platt, Robert W.
    STATISTICS IN MEDICINE, 2020, 39 (29) : 4466 - 4479
  • [9] Bayesian likelihood-based regression for estimation of optimal dynamic treatment regimes
    Yu, Weichang
    Bondell, Howard D.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (03) : 551 - 574
  • [10] Estimation for optimal treatment regimes with survival data under semiparametric model
    Fang, Yuexin
    Zhou, Yong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (04) : 883 - 894