Model Checking with Residuals for g-estimation of Optimal Dynamic Treatment Regimes

被引:19
|
作者
Rich, Benjamin [1 ]
Moodie, Erica E. M. [1 ]
Stephens, David A. [1 ]
Platt, Robert W. [1 ]
机构
[1] McGill Univ, Montreal, PQ H3A 2T5, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
dynamic treatment regimes; optimal dynamic regimes; g-estimation; model checking; residuals; VARIABLE SELECTION;
D O I
10.2202/1557-4679.1210
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we discuss model checking with residual diagnostic plots for g-estimation of optimal dynamic treatment regimes. The g-estimation method requires three different model specifications at each treatment interval under consideration: (1) the blip model; (2) the expected counterfactual model; and (3) the propensity model. Of these, the expected counterfactual model is especially difficult to specify correctly in practice and so far there has been little guidance as to how to check for model misspecification. Residual plots are a useful and standard tool for model diagnostics in the classical regression setting; we have adapted this approach for g-estimation. We demonstrate the usefulness of our approach in a simulation study, and apply it to real data in the context of estimating the optimal time to stop breastfeeding.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Ascertaining properties of weighting in the estimation of optimal treatment regimes under monotone missingness
    Dong, Lin
    Laber, Eric
    Goldberg, Yair
    Song, Rui
    Yang, Shu
    STATISTICS IN MEDICINE, 2020, 39 (25) : 3503 - 3520
  • [42] Semiparametric Bayesian inference for optimal dynamic treatment regimes via dynamic marginal structural models
    Duque, Daniel Rodriguez
    Stephens, David A.
    Moodie, Erica E. M.
    Klein, Marina B.
    BIOSTATISTICS, 2023, 24 (03) : 708 - 727
  • [43] A smoothed Q-learning algorithm for estimating optimal dynamic treatment regimes
    Fan, Yanqin
    He, Ming
    Su, Liangjun
    Zhou, Xiao-Hua
    SCANDINAVIAN JOURNAL OF STATISTICS, 2019, 46 (02) : 446 - 469
  • [44] TREE-BASED REINFORCEMENT LEARNING FOR ESTIMATING OPTIMAL DYNAMIC TREATMENT REGIMES
    Tao, Yebin
    Wang, Lu
    Almirall, Daniel
    ANNALS OF APPLIED STATISTICS, 2018, 12 (03): : 1914 - 1938
  • [45] Learning and Assessing Optimal Dynamic Treatment Regimes Through Cooperative Imitation Learning
    Shah, Syed Ihtesham Hussain
    Coronato, Antonio
    Naeem, Muddasar
    De Pietro, Giuseppe
    IEEE Access, 2022, 10 : 78148 - 78158
  • [46] Learning Optimal Dynamic Treatment Regimes Using Causal Tree Methods in Medicine
    Blumlein, Theresa
    Persson, Joel
    Feuerriegel, Stefan
    MACHINE LEARNING FOR HEALTHCARE CONFERENCE, VOL 182, 2022, 182 : 146 - 171
  • [47] Q- and A-Learning Methods for Estimating Optimal Dynamic Treatment Regimes
    Schulte, Phillip J.
    Tsiatis, Anastasios A.
    Laber, Eric B.
    Davidian, Marie
    STATISTICAL SCIENCE, 2014, 29 (04) : 640 - 661
  • [48] Learning and Assessing Optimal Dynamic Treatment Regimes Through Cooperative Imitation Learning
    Shah, Syed Ihtesham Hussain
    Coronato, Antonio
    Naeem, Muddasar
    De Pietro, Giuseppe
    IEEE ACCESS, 2022, 10 : 78148 - 78158
  • [49] Bayesian Nonparametric Estimation for Dynamic Treatment Regimes With Sequential Transition Times Comment
    Chen, Jingxiang
    Liu, Yufeng
    Zeng, Donglin
    Song, Rui
    Zhao, Yingqi
    Kosorok, Michael R.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (515) : 942 - 947
  • [50] DTR: An R Package for Estimation and Comparison of Survival Outcomes of Dynamic Treatment Regimes
    Tang, Xinyu
    Melguizo, Maria
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 65 (07): : 1 - 28