Model Checking with Residuals for g-estimation of Optimal Dynamic Treatment Regimes

被引:19
|
作者
Rich, Benjamin [1 ]
Moodie, Erica E. M. [1 ]
Stephens, David A. [1 ]
Platt, Robert W. [1 ]
机构
[1] McGill Univ, Montreal, PQ H3A 2T5, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
dynamic treatment regimes; optimal dynamic regimes; g-estimation; model checking; residuals; VARIABLE SELECTION;
D O I
10.2202/1557-4679.1210
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we discuss model checking with residual diagnostic plots for g-estimation of optimal dynamic treatment regimes. The g-estimation method requires three different model specifications at each treatment interval under consideration: (1) the blip model; (2) the expected counterfactual model; and (3) the propensity model. Of these, the expected counterfactual model is especially difficult to specify correctly in practice and so far there has been little guidance as to how to check for model misspecification. Residual plots are a useful and standard tool for model diagnostics in the classical regression setting; we have adapted this approach for g-estimation. We demonstrate the usefulness of our approach in a simulation study, and apply it to real data in the context of estimating the optimal time to stop breastfeeding.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] DYNAMIC MARGINAL STRUCTURAL MODELS TO FIND OPTIMAL TREATMENT REGIMES
    Cain, L. E.
    Hernan, M. A.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2009, 169 : S41 - S41
  • [22] Synthesizing independent stagewise trials for optimal dynamic treatment regimes
    Chen, Yuan
    Wang, Yuanjia
    Zeng, Donglin
    STATISTICS IN MEDICINE, 2020, 39 (28) : 4107 - 4119
  • [23] Learning optimal dynamic treatment regimes from longitudinal data
    Williams, Nicholas T.
    Hoffman, Katherine L.
    Diaz, Ivan
    Rudolph, Kara E.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2024,
  • [24] Optimal dynamic treatment regimes with survival endpoints: introducingDWSurvin theRpackageDTRreg
    Simoneau, Gabrielle
    Moodie, Erica E. M.
    Wallace, Michael P.
    Platt, Robert W.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (16) : 2991 - 3008
  • [25] Near-Optimal Reinforcement Learning in Dynamic Treatment Regimes
    Zhang, Junzhe
    Bareinboim, Elias
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [26] Stochastic Tree Search for Estimating Optimal Dynamic Treatment Regimes
    Sun, Yilun
    Wang, Lu
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 116 (533) : 421 - 432
  • [27] Augmented and doubly robust G-estimation of causal effects under a Structural nested failure time model
    Mertens, Karl
    Vansteelandt, Stijn
    BIOMETRICS, 2018, 74 (02) : 472 - 480
  • [28] Finite element model update via Bayesian estimation and minimization of dynamic residuals
    Alvin, KF
    AIAA JOURNAL, 1997, 35 (05) : 879 - 886
  • [29] Finite element model update via Bayesian estimation and minimization of dynamic residuals
    Alvin, KF
    PROCEEDINGS OF THE 14TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS I & II, 1996, 2768 : 561 - 567
  • [30] Adaptive treatment strategies for chronic conditions: shared-parameter G-estimation with an application to rheumatoid arthritis
    Wang, Shouao
    Moodie, Erica Em
    Stephens, David A.
    Nijjar, Jagtar S.
    BIOSTATISTICS, 2022, 23 (02) : 430 - 448