Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions

被引:115
|
作者
Zhang, Baqun [1 ]
Tsiatis, Anastasios A. [2 ]
Laber, Eric B. [2 ]
Davidian, Marie [2 ]
机构
[1] Renmin Univ China, Sch Stat, Beijing 100872, Peoples R China
[2] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
基金
美国国家卫生研究院;
关键词
A-learning; Double robustness; Outcome regression; Propensity score; Q-learning; REGRESSION; INFERENCE; DESIGN; MODELS;
D O I
10.1093/biomet/ast014
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A dynamic treatment regime is a list of sequential decision rules for assigning treatment based on a patient's history. Q- and A-learning are two main approaches for estimating the optimal regime, i.e., that yielding the most beneficial outcome in the patient population, using data from a clinical trial or observational study. Q-learning requires postulated regression models for the outcome, while A-learning involves models for that part of the outcome regression representing treatment contrasts and for treatment assignment. We propose an alternative to Q- and A-learning that maximizes a doubly robust augmented inverse probability weighted estimator for population mean outcome over a restricted class of regimes. Simulations demonstrate the method's performance and robustness to model misspecification, which is a key concern.
引用
收藏
页码:681 / 694
页数:14
相关论文
共 50 条
  • [1] Doubly Robust Estimation of Optimal Dynamic Treatment Regimes
    Barrett J.K.
    Henderson R.
    Rosthøj S.
    [J]. Statistics in Biosciences, 2014, 6 (2) : 244 - 260
  • [2] Estimation of optimal dynamic treatment regimes
    Zhao, Ying-Qi
    Laber, Eric B.
    [J]. CLINICAL TRIALS, 2014, 11 (04) : 400 - 407
  • [3] Doubly robust estimation of optimal dynamic treatment regimes with multicategory treatments and survival outcomes
    Zhang, Zhang
    Yi, Danhui
    Fan, Yiwei
    [J]. STATISTICS IN MEDICINE, 2022, 41 (24) : 4903 - 4923
  • [4] Optimal dynamic treatment regimes
    Murphy, SA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 : 331 - 355
  • [5] Outcome trajectory estimation for optimal dynamic treatment regimes with repeated measures
    Zhang, Yuan
    Vock, David M.
    Patrick, Megan E.
    Finestack, Lizbeth H.
    Murray, Thomas A.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2023, 72 (04) : 976 - 991
  • [6] Bayesian Nonparametric Estimation for Dynamic Treatment Regimes With Sequential Transition Times Comment
    Guan, Qian
    Laber, Eric B.
    Reich, Brian J.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (515) : 936 - 942
  • [7] Bayesian Nonparametric Estimation for Dynamic Treatment Regimes With Sequential Transition Times Rejoinder
    Xu, Yanxun
    Muller, Peter
    Wahed, Abdus S.
    Thall, Peter
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (515) : 948 - 950
  • [8] Demystifying optimal dynamic treatment regimes
    Moodie, Erica E. M.
    Richardson, Thomas S.
    Stephens, David A.
    [J]. BIOMETRICS, 2007, 63 (02) : 447 - 455
  • [9] A Robust Method for Estimating Optimal Treatment Regimes
    Zhang, Baqun
    Tsiatis, Anastasios A.
    Laber, Eric B.
    Davidian, Marie
    [J]. BIOMETRICS, 2012, 68 (04) : 1010 - 1018
  • [10] Model Checking with Residuals for g-estimation of Optimal Dynamic Treatment Regimes
    Rich, Benjamin
    Moodie, Erica E. M.
    Stephens, David A.
    Platt, Robert W.
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (02):