Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions

被引:115
|
作者
Zhang, Baqun [1 ]
Tsiatis, Anastasios A. [2 ]
Laber, Eric B. [2 ]
Davidian, Marie [2 ]
机构
[1] Renmin Univ China, Sch Stat, Beijing 100872, Peoples R China
[2] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
基金
美国国家卫生研究院;
关键词
A-learning; Double robustness; Outcome regression; Propensity score; Q-learning; REGRESSION; INFERENCE; DESIGN; MODELS;
D O I
10.1093/biomet/ast014
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A dynamic treatment regime is a list of sequential decision rules for assigning treatment based on a patient's history. Q- and A-learning are two main approaches for estimating the optimal regime, i.e., that yielding the most beneficial outcome in the patient population, using data from a clinical trial or observational study. Q-learning requires postulated regression models for the outcome, while A-learning involves models for that part of the outcome regression representing treatment contrasts and for treatment assignment. We propose an alternative to Q- and A-learning that maximizes a doubly robust augmented inverse probability weighted estimator for population mean outcome over a restricted class of regimes. Simulations demonstrate the method's performance and robustness to model misspecification, which is a key concern.
引用
收藏
页码:681 / 694
页数:14
相关论文
共 50 条
  • [41] A robust covariate-balancing method for learning optimal individualized treatment regimes
    Li, Canhui
    Zeng, Donglin
    Zhu, Wensheng
    [J]. BIOMETRIKA, 2024,
  • [42] Contrast weighted learning for robust optimal treatment rule estimation
    Guo, Xiaohan
    Ni, Ai
    [J]. STATISTICS IN MEDICINE, 2022, 41 (27) : 5379 - 5394
  • [43] On estimation and cross-validation of dynamic treatment regimes with competing risks
    Morzywolek, Pawel
    Steen, Johan
    Van Biesen, Wim
    Decruyenaere, Johan
    Vansteelandt, Stijn
    [J]. STATISTICS IN MEDICINE, 2022, 41 (26) : 5258 - 5275
  • [44] Variable selection in regression-based estimation of dynamic treatment regimes
    Bian, Zeyu
    Moodie, Erica E. M.
    Shortreed, Susan M.
    Bhatnagar, Sahir
    [J]. BIOMETRICS, 2023, 79 (02) : 988 - 999
  • [45] Dynamic treatment regimes with interference
    Jiang, Cong
    Wallace, Michael P.
    Thompson, Mary E.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (02): : 469 - 502
  • [46] Interpretable Dynamic Treatment Regimes
    Zhang, Yichi
    Laber, Eric B.
    Davidian, Marie
    Tsiatis, Anastasios A.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1541 - 1549
  • [47] A robust asymptotically optimal procedure in Bayes sequential estimation
    Hwang, LC
    [J]. STATISTICA SINICA, 1999, 9 (03) : 893 - 904
  • [48] Sequential estimation with optimal forgetting for robust speech recognition
    Afify, M
    Siohan, O
    [J]. IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2004, 12 (01): : 19 - 26
  • [49] On estimation of optimal treatment regimes for maximizing t-year survival probability
    Jiang, Runchao
    Lu, Wenbin
    Song, Rui
    Davidian, Marie
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (04) : 1165 - 1185
  • [50] Risk Factor Adjustment in Marginal Structural Model Estimation of Optimal Treatment Regimes
    Moodie, Erica E. M.
    [J]. BIOMETRICAL JOURNAL, 2009, 51 (05) : 774 - 788