A robust covariate-balancing method for learning optimal individualized treatment regimes
被引:0
|
作者:
Li, Canhui
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, KLAS, Changchun 130024, Peoples R China
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R ChinaNortheast Normal Univ, KLAS, Changchun 130024, Peoples R China
Li, Canhui
[1
,2
]
Zeng, Donglin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biostat, 1415 Washington Hts, Ann Arbor, MI 48109 USANortheast Normal Univ, KLAS, Changchun 130024, Peoples R China
Zeng, Donglin
[3
]
Zhu, Wensheng
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Sch Math & Stat, Kunming 650091, Peoples R ChinaNortheast Normal Univ, KLAS, Changchun 130024, Peoples R China
Zhu, Wensheng
[4
]
机构:
[1] Northeast Normal Univ, KLAS, Changchun 130024, Peoples R China
[2] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[3] Univ Michigan, Dept Biostat, 1415 Washington Hts, Ann Arbor, MI 48109 USA
[4] Yunnan Univ, Sch Math & Stat, Kunming 650091, Peoples R China
One of the most important problems in precision medicine is to find the optimal individualized treatment rule, which is designed to recommend treatment decisions and maximize overall clinical benefit to patients based on their individual characteristics. Typically, the expected clinical outcome is required to be estimated first, for which an outcome regression model or a propensity score model usually needs to be assumed with most existing statistical methods. However, if either model assumption is invalid, the estimated treatment regime will not be reliable. In this article, we first define a contrast value function, which forms the basis for the study of individualized treatment regimes. Then we construct a hybrid estimator of the contrast value function by combining two types of estimation methods. We further propose a robust covariate-balancing estimator of the contrast value function by combining the inverse probability weighted method and matching method, which is based on the covariate balancing propensity score proposed by . Theoretical results show that the proposed estimator is doubly robust, ie, it is consistent if either the propensity score model or the matching is correct. Based on a large number of simulation studies, we demonstrate that the proposed estimator outperforms existing methods. Application of the proposed method is illustrated through analysis of the SUPPORT study.
机构:Northeast Normal Univ, Key Lab Appl Stat, MOE, Changchun 130024, Peoples R China
Li, Canhui
Li, Weirong
论文数: 0引用数: 0
h-index: 0
机构:Northeast Normal Univ, Key Lab Appl Stat, MOE, Changchun 130024, Peoples R China
Li, Weirong
Zhu, Wensheng
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Key Lab Appl Stat, MOE, Changchun 130024, Peoples R China
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R ChinaNortheast Normal Univ, Key Lab Appl Stat, MOE, Changchun 130024, Peoples R China
机构:
Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53706 USAUniv Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53706 USA
Ghosh, Trinetri
Ma, Yanyuan
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Stat, University Pk, PA 16802 USAUniv Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53706 USA
Ma, Yanyuan
Zhu, Wensheng
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Math & Stat, Changchun, Jilin, Peoples R ChinaUniv Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53706 USA
Zhu, Wensheng
Wang, Yuanjia
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Biostat, New York, NY 10032 USAUniv Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53706 USA
机构:
Shanghai Univ Int Business & Econ, Shanghai, Peoples R ChinaShanghai Univ Int Business & Econ, Shanghai, Peoples R China
Fan, Caiyun
Lu, Wenbin
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Raleigh, NC 27695 USAShanghai Univ Int Business & Econ, Shanghai, Peoples R China
Lu, Wenbin
Song, Rui
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Raleigh, NC 27695 USAShanghai Univ Int Business & Econ, Shanghai, Peoples R China
Song, Rui
Zhou, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Finance & Econ, Beijing, Peoples R China
Chinese Acad Sci, Beijing, Peoples R ChinaShanghai Univ Int Business & Econ, Shanghai, Peoples R China
机构:
Natl Univ Singapore, Dept Ind & Syst Engn, Singapore, SingaporeNatl Univ Singapore, Dept Ind & Syst Engn, Singapore, Singapore
Fu, Sheng
He, Qinying
论文数: 0引用数: 0
h-index: 0
机构:
South China Agr Univ, Coll Econ & Management, Guangzhou, Guangdong, Peoples R ChinaNatl Univ Singapore, Dept Ind & Syst Engn, Singapore, Singapore
He, Qinying
Zhang, Sanguo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing, Peoples R ChinaNatl Univ Singapore, Dept Ind & Syst Engn, Singapore, Singapore
Zhang, Sanguo
Liu, Yufeng
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Stat & Operat Res, Dept Genet,Dept Biostat, Carolina Ctr Genome Sci,Lineberger Comprehens Can, Chapel Hill, NC 27599 USANatl Univ Singapore, Dept Ind & Syst Engn, Singapore, Singapore
机构:
Merck & Co Inc, MRL, Biostat & Res Decis Sci, Kenilworth, NJ USAMerck & Co Inc, MRL, Biostat & Res Decis Sci, Kenilworth, NJ USA
Zhang, Jinchun
Troxel, Andrea B.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Populat Hlth, Grossman Sch Med, New York, NY USAMerck & Co Inc, MRL, Biostat & Res Decis Sci, Kenilworth, NJ USA
Troxel, Andrea B.
Petkova, Eva
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Populat Hlth, Grossman Sch Med, New York, NY USA
Nathan S Kline Inst Psychiat Res, Orangeburg, NY USAMerck & Co Inc, MRL, Biostat & Res Decis Sci, Kenilworth, NJ USA
机构:
North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
207 Boren Ave N, Seattle, WA 98109 USANorth Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
Xiao, W.
Zhang, H. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arizona, Dept Math, Tucson, AZ 85721 USANorth Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
Zhang, H. H.
Lu, W.
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USANorth Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA