Doubly Robust Estimation of Optimal Dynamic Treatment Regimes

被引:15
|
作者
Barrett J.K. [1 ]
Henderson R. [2 ]
Rosthøj S. [3 ]
机构
[1] MRC Biostatistics Unit, Institute of Public Health, University Forvie Site, Robinson Way, Cambridge
[2] School of Mathematics and Statistics, University of Newcastle, Newcastle upon Tyne
[3] Department of Biostatistics, Institute of Public Health, University of Copenhagen, Copenhagen
基金
英国医学研究理事会;
关键词
Causal inference; Dynamic treatment regimes; G-estimation; Regret-regression;
D O I
10.1007/s12561-013-9097-6
中图分类号
学科分类号
摘要
We compare methods for estimating optimal dynamic decision rules from observational data, with particular focus on estimating the regret functions defined by Murphy (in J. R. Stat. Soc., Ser. B, Stat. Methodol. 65:331–355, 2003). We formulate a doubly robust version of the regret-regression approach of Almirall et al. (in Biometrics 66:131–139, 2010) and Henderson et al. (in Biometrics 66:1192–1201, 2010) and demonstrate that it is equivalent to a reduced form of Robins’ efficient g-estimation procedure (Robins, in Proceedings of the Second Symposium on Biostatistics. Springer, New York, pp. 189–326, 2004). Simulation studies suggest that while the regret-regression approach is most efficient when there is no model misspecification, in the presence of misspecification the efficient g-estimation procedure is more robust. The g-estimation method can be difficult to apply in complex circumstances, however. We illustrate the ideas and methods through an application on control of blood clotting time for patients on long term anticoagulation. © 2013, The Author(s).
引用
收藏
页码:244 / 260
页数:16
相关论文
共 50 条
  • [1] Doubly robust estimation of optimal dynamic treatment regimes with multicategory treatments and survival outcomes
    Zhang, Zhang
    Yi, Danhui
    Fan, Yiwei
    [J]. STATISTICS IN MEDICINE, 2022, 41 (24) : 4903 - 4923
  • [2] Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions
    Zhang, Baqun
    Tsiatis, Anastasios A.
    Laber, Eric B.
    Davidian, Marie
    [J]. BIOMETRIKA, 2013, 100 (03) : 681 - 694
  • [3] Doubly robust estimation of optimal treatment regimes for survival data using an instrumental variable
    Junwen, Xia
    Zishu, Zhan
    Jingxiao, Zhang
    [J]. STATISTICS AND COMPUTING, 2024, 34 (03)
  • [4] Estimation of optimal dynamic treatment regimes
    Zhao, Ying-Qi
    Laber, Eric B.
    [J]. CLINICAL TRIALS, 2014, 11 (04) : 400 - 407
  • [5] Improved Doubly Robust Estimation in Marginal Mean Models for Dynamic Regimes
    Sun, Hao
    Ertefaie, Ashkan
    Lu, Xin
    Johnson, Brent A.
    [J]. JOURNAL OF CAUSAL INFERENCE, 2020, 8 (01) : 300 - 314
  • [6] DOUBLY ROBUST ESTIMATION OF OPTIMAL TREATMENT REGIMES FOR SURVIVAL DATA-WITH APPLICATION TO AN HIV/AIDS STUDY
    Jiang, Runchao
    Lu, Wenbin
    Song, Rui
    Hudgens, Michael G.
    Naprvavnik, Sonia
    [J]. ANNALS OF APPLIED STATISTICS, 2017, 11 (03): : 1763 - 1786
  • [7] Improved Doubly Robust Estimation in Learning Optimal Individualized Treatment Rules
    Pan, Yinghao
    Zhao, Ying-Qi
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (533) : 283 - 294
  • [8] Doubly Robust Estimation of Optimal Dosing Strategies
    Schulz, Juliana
    Moodie, Erica E. M.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (533) : 256 - 268
  • [9] Optimal dynamic treatment regimes
    Murphy, SA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 : 331 - 355
  • [10] Outcome trajectory estimation for optimal dynamic treatment regimes with repeated measures
    Zhang, Yuan
    Vock, David M.
    Patrick, Megan E.
    Finestack, Lizbeth H.
    Murray, Thomas A.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2023, 72 (04) : 976 - 991