Pseudo-marginal Bayesian inference for Gaussian process latent variable models

被引:0
|
作者
C. Gadd
S. Wade
A. A. Shah
机构
[1] Chongqing University,Key Laboratory of Low
[2] University of Warwick,grade Energy Utilization Technologies and Systems
[3] University of Warwick,Warwick Centre for Predictive Modelling
[4] University of Edinburgh,Department of Statistics
来源
Machine Learning | 2021年 / 110卷
关键词
Gaussian process; Latent variable model; Approximate inference; Variational; Collapsed Gibbs sampling;
D O I
暂无
中图分类号
学科分类号
摘要
A Bayesian inference framework for supervised Gaussian process latent variable models is introduced. The framework overcomes the high correlations between latent variables and hyperparameters by collapsing the statistical model through approximate integration of the latent variables. Using an unbiased pseudo estimate for the marginal likelihood, the exact hyperparameter posterior can then be explored using collapsed Gibbs sampling and, conditional on these samples, the exact latent posterior can be explored through elliptical slice sampling. The framework is tested on both simulated and real examples. When compared with the standard approach based on variational inference, this approach leads to significant improvements in the predictive accuracy and quantification of uncertainty, as well as a deeper insight into the challenges of performing inference in this class of models.
引用
收藏
页码:1105 / 1143
页数:38
相关论文
共 50 条
  • [21] Improving the INLA approach for approximate Bayesian inference for latent Gaussian models
    Ferkingstad, Egil
    Rue, Havard
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 2706 - 2731
  • [22] Manifold Denoising with Gaussian Process Latent Variable Models
    Gao, Yan
    Chan, Kap Luk
    Yau, Wei-Yun
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3719 - 3722
  • [23] Applications of Gaussian Process Latent Variable Models in Finance
    Nirwan, Rajbir S.
    Bertschinger, Nils
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, 2020, 1038 : 1209 - 1221
  • [24] Gaussian process latent variable models for fault detection
    Eciolaza, Luka
    Alkarouri, A.
    Lawrence, N. D.
    Kadirkamanathan, V.
    Fleming, P. J.
    [J]. 2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 287 - 292
  • [25] Multimodal Gaussian Process Latent Variable Models with Harmonization
    Song, Guoli
    Wang, Shuhui
    Huang, Qingming
    Tian, Qi
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5039 - 5047
  • [26] Bayesian Comparison of Latent Variable Models: Conditional Versus Marginal Likelihoods
    Edgar C. Merkle
    Daniel Furr
    Sophia Rabe-Hesketh
    [J]. Psychometrika, 2019, 84 : 802 - 829
  • [27] Bayesian Comparison of Latent Variable Models: Conditional Versus Marginal Likelihoods
    Merkle, Edgar C.
    Furr, Daniel
    Rabe-Hesketh, Sophia
    [J]. PSYCHOMETRIKA, 2019, 84 (03) : 802 - 829
  • [28] Tracking the Dimensions of Latent Spaces of Gaussian Process Latent Variable Models
    Liu, Yuhao
    Djuric, Petar M.
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4193 - 4197
  • [29] Pseudo-Marginal Inference for CTMCs on Infinite Spaces via Monotonic Likelihood Approximations
    Biron-Lattes, Miguel
    Bouchard-Cote, Alexandre
    Campbell, Trevor
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (02) : 513 - 527
  • [30] A transdimensional approximate Bayesian computation using the pseudo-marginal approach for model choice
    Kobayashi, Genya
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 80 : 167 - 183