Multimodal Gaussian Process Latent Variable Models with Harmonization

被引:7
|
作者
Song, Guoli [1 ,2 ]
Wang, Shuhui [2 ]
Huang, Qingming [1 ,2 ]
Tian, Qi [3 ]
机构
[1] Univ Chinese Acad Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Comput Tech, Key Lab Intell Info Proc, Beijing, Peoples R China
[3] Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
基金
中国国家自然科学基金;
关键词
MULTIVIEW; REPRESENTATION;
D O I
10.1109/ICCV.2017.538
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we address multimodal learning problem with Gaussian process latent variable models (GPLVMs) and their application to cross-modal retrieval. Existing GPLVM based studies generally impose individual priors over the model parameters and ignore the intrinsic relations among these parameters. Considering the strong complementarity between modalities, we propose a novel joint prior over the parameters for multimodal GPLVMs to propagate multimodal information in both kernel hyperparameter spaces and latent space. The joint prior is formulated as a harmonization constraint on the model parameters, which enforces the agreement among the modality-specific GP kernels and the similarity in the latent space. We incorporate the harmonization mechanism into the learning process of multimodal GPLVMs. The proposed methods are evaluated on three widely used multimodal datasets for cross-modal retrieval. Experimental results show that the harmonization mechanism is beneficial to the GPLVM algorithms for learning non-linear correlation among heterogeneous modalities.
引用
收藏
页码:5039 / 5047
页数:9
相关论文
共 50 条
  • [1] Harmonized Multimodal Learning with Gaussian Process Latent Variable Models
    Song, Guoli
    Wang, Shuhui
    Huang, Qingming
    Tian, Qi
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (03) : 858 - 872
  • [2] Multimodal Similarity Gaussian Process Latent Variable Model
    Song, Guoli
    Wang, Shuhui
    Huang, Qingming
    Tian, Qi
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) : 4168 - 4181
  • [3] Ensembles of Gaussian process latent variable models
    Ajirak, Marzieh
    Liu, Yuhao
    Djuric, Petar M.
    [J]. 2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1467 - 1471
  • [4] A review on Gaussian Process Latent Variable Models
    Li, Ping
    Chen, Songcan
    [J]. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2016, 1 (04) : 366 - +
  • [5] Gaussian Mixture Modeling with Gaussian Process Latent Variable Models
    Nickisch, Hannes
    Rasmussen, Carl Edward
    [J]. PATTERN RECOGNITION, 2010, 6376 : 272 - 282
  • [6] Manifold Denoising with Gaussian Process Latent Variable Models
    Gao, Yan
    Chan, Kap Luk
    Yau, Wei-Yun
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3719 - 3722
  • [7] Applications of Gaussian Process Latent Variable Models in Finance
    Nirwan, Rajbir S.
    Bertschinger, Nils
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, 2020, 1038 : 1209 - 1221
  • [8] Gaussian process latent variable models for fault detection
    Eciolaza, Luka
    Alkarouri, A.
    Lawrence, N. D.
    Kadirkamanathan, V.
    Fleming, P. J.
    [J]. 2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 287 - 292
  • [9] Tracking the Dimensions of Latent Spaces of Gaussian Process Latent Variable Models
    Liu, Yuhao
    Djuric, Petar M.
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4193 - 4197
  • [10] Harmonization Shared Autoencoder Gaussian Process Latent Variable Model With Relaxed Hamming Distance
    Li, Jinxing
    Zhang, Bob
    Lu, Guangming
    Xu, Yong
    Wu, Feng
    Zhang, David
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (11) : 5093 - 5107