Gaussian process latent variable models for fault detection

被引:1
|
作者
Eciolaza, Luka [1 ]
Alkarouri, A. [1 ]
Lawrence, N. D. [2 ]
Kadirkamanathan, V. [1 ]
Fleming, P. J. [1 ]
机构
[1] Univ Sheffield, Rolls Royce Supported Univ Technol Ctr Control &, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
[2] Univ Sheffield, Dept Comp Sci, Sheffield S10 2TN, S Yorkshire, England
关键词
fault detection; dimensionality reduction; principal component analysis;
D O I
10.1109/CIDM.2007.368886
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Gaussian process latent variable model (GPLVM) is a novel unsupervised approach to nonlinear low dimensional embedding proposed by Lawrence (2005). This paper presents the development of a framework for the implementation of the GPLVM for fault detection. A series of experiments have been carried out comparing and combining the GPLVM to the conventional and widely used linear dimension reduction technique of Principal Component Analysis (PCA). The inclusion of the GPLVM for the visualisation and data analysis, led to a considerable improvement in the classification results.
引用
收藏
页码:287 / 292
页数:6
相关论文
共 50 条
  • [1] Fault detection based on Gaussian process latent variable models
    Serradilla, J.
    Shi, J. Q.
    Morris, A. J.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 109 (01) : 9 - 21
  • [2] A review on Gaussian Process Latent Variable Models
    Li, Ping
    Chen, Songcan
    [J]. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2016, 1 (04) : 366 - +
  • [3] Ensembles of Gaussian process latent variable models
    Ajirak, Marzieh
    Liu, Yuhao
    Djuric, Petar M.
    [J]. 2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1467 - 1471
  • [4] Gaussian Mixture Modeling with Gaussian Process Latent Variable Models
    Nickisch, Hannes
    Rasmussen, Carl Edward
    [J]. PATTERN RECOGNITION, 2010, 6376 : 272 - 282
  • [5] Manifold Denoising with Gaussian Process Latent Variable Models
    Gao, Yan
    Chan, Kap Luk
    Yau, Wei-Yun
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3719 - 3722
  • [6] Applications of Gaussian Process Latent Variable Models in Finance
    Nirwan, Rajbir S.
    Bertschinger, Nils
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, 2020, 1038 : 1209 - 1221
  • [7] Multimodal Gaussian Process Latent Variable Models with Harmonization
    Song, Guoli
    Wang, Shuhui
    Huang, Qingming
    Tian, Qi
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5039 - 5047
  • [8] Tracking the Dimensions of Latent Spaces of Gaussian Process Latent Variable Models
    Liu, Yuhao
    Djuric, Petar M.
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4193 - 4197
  • [9] Classification of Streetsigns Using Gaussian Process Latent Variable Models
    Woeber, Wilfried
    Aburaia, Mohamed
    Olaverri-Monreal, Cristina
    [J]. 2019 8TH IEEE INTERNATIONAL CONFERENCE ON CONNECTED VEHICLES AND EXPO (IIEEE CCVE), 2019,
  • [10] Fully Bayesian Inference for Latent Variable Gaussian Process Models
    Yerramilli, Suraj
    Iyer, Akshay
    Chen, Wei
    Apley, Daniel W.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2023, 11 (04): : 1357 - 1381