Tracking the Dimensions of Latent Spaces of Gaussian Process Latent Variable Models

被引:0
|
作者
Liu, Yuhao [1 ]
Djuric, Petar M. [2 ]
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
关键词
Latent Variables; Dimension reduction; Gaussian processes; COMPONENTS;
D O I
10.1109/ICASSP43922.2022.9746538
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Determining the number of latent variables, or the dimensions of latent states, is a ubiquitous problem in dimension reduction. In this paper, we introduce a novel sequential method that relies on the Bayesian approach to estimate the dimension of a latent space of a Gaussian process latent variable model. The proposed method also considers settings where the number of latent variables varies with time. To evaluate our methodology, we compared the estimated dimensions with the true dimensions as they vary with time. Results on synthetic data demonstrate that our method has a very good performance.
引用
收藏
页码:4193 / 4197
页数:5
相关论文
共 50 条
  • [1] A review on Gaussian Process Latent Variable Models
    Li, Ping
    Chen, Songcan
    [J]. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2016, 1 (04) : 366 - +
  • [2] Ensembles of Gaussian process latent variable models
    Ajirak, Marzieh
    Liu, Yuhao
    Djuric, Petar M.
    [J]. 2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1467 - 1471
  • [3] Gaussian Mixture Modeling with Gaussian Process Latent Variable Models
    Nickisch, Hannes
    Rasmussen, Carl Edward
    [J]. PATTERN RECOGNITION, 2010, 6376 : 272 - 282
  • [4] Applications of Gaussian Process Latent Variable Models in Finance
    Nirwan, Rajbir S.
    Bertschinger, Nils
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, 2020, 1038 : 1209 - 1221
  • [5] Manifold Denoising with Gaussian Process Latent Variable Models
    Gao, Yan
    Chan, Kap Luk
    Yau, Wei-Yun
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3719 - 3722
  • [6] Gaussian process latent variable models for fault detection
    Eciolaza, Luka
    Alkarouri, A.
    Lawrence, N. D.
    Kadirkamanathan, V.
    Fleming, P. J.
    [J]. 2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 287 - 292
  • [7] Multimodal Gaussian Process Latent Variable Models with Harmonization
    Song, Guoli
    Wang, Shuhui
    Huang, Qingming
    Tian, Qi
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5039 - 5047
  • [8] Harmonized Multimodal Learning with Gaussian Process Latent Variable Models
    Song, Guoli
    Wang, Shuhui
    Huang, Qingming
    Tian, Qi
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (03) : 858 - 872
  • [9] Fully Bayesian Inference for Latent Variable Gaussian Process Models
    Yerramilli, Suraj
    Iyer, Akshay
    Chen, Wei
    Apley, Daniel W.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2023, 11 (04): : 1357 - 1381
  • [10] Gaussian Latent Variable Models for Variable Selection
    Jiang, Xiubao
    You, Xinge
    Mou, Yi
    Yu, Shujian
    Zeng, Wu
    [J]. 2014 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2014, : 353 - 357