Tracking the Dimensions of Latent Spaces of Gaussian Process Latent Variable Models

被引:0
|
作者
Liu, Yuhao [1 ]
Djuric, Petar M. [2 ]
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
关键词
Latent Variables; Dimension reduction; Gaussian processes; COMPONENTS;
D O I
10.1109/ICASSP43922.2022.9746538
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Determining the number of latent variables, or the dimensions of latent states, is a ubiquitous problem in dimension reduction. In this paper, we introduce a novel sequential method that relies on the Bayesian approach to estimate the dimension of a latent space of a Gaussian process latent variable model. The proposed method also considers settings where the number of latent variables varies with time. To evaluate our methodology, we compared the estimated dimensions with the true dimensions as they vary with time. Results on synthetic data demonstrate that our method has a very good performance.
引用
收藏
页码:4193 / 4197
页数:5
相关论文
共 50 条
  • [21] Estimation and visualization of process states using latent variable models based on Gaussian process
    Kaneko, Hiromasa
    [J]. ANALYTICAL SCIENCE ADVANCES, 2021, 2 (5-6): : 326 - 333
  • [22] Supervised latent linear Gaussian process latent variable model based classification
    Hou, Zhisong
    Feng, Qigao
    Zuo, Xiangang
    [J]. Journal of Computational Information Systems, 2013, 9 (13): : 5085 - 5092
  • [23] Supervised Latent Linear Gaussian Process Latent Variable Model for Dimensionality Reduction
    Jiang, Xinwei
    Gao, Junbin
    Wang, Tianjiang
    Zheng, Lihong
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (06): : 1620 - 1632
  • [24] Generation of Stochastic Interconnect Responses via Gaussian Process Latent Variable Models
    De Ridder, Simon
    Deschrijver, Dirk
    Manfredi, Paolo
    Dhaene, Tom
    Vande Ginste, Dries
    [J]. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2019, 61 (02) : 582 - 585
  • [25] Learning GP-BayesFilters via Gaussian process latent variable models
    Ko, Jonathan
    Fox, Dieter
    [J]. AUTONOMOUS ROBOTS, 2011, 30 (01) : 3 - 23
  • [26] Learning GP-BayesFilters via Gaussian process latent variable models
    Jonathan Ko
    Dieter Fox
    [J]. Autonomous Robots, 2011, 30 : 3 - 23
  • [27] Shared Gaussian Process Latent Variable Models for Handling Ambiguous Facial Expressions
    Ek, Carl Henrik
    Jaeckel, Peter
    Campbell, Neill
    Lawrence, Neil D.
    Melhuish, Chris
    [J]. INTELLIGENT SYSTEMS AND AUTOMATION, 2009, 1107 : 147 - +
  • [28] Pseudo-marginal Bayesian inference for Gaussian process latent variable models
    Gadd, C.
    Wade, S.
    Shah, A. A.
    [J]. MACHINE LEARNING, 2021, 110 (06) : 1105 - 1143
  • [29] Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
    Gal, Yarin
    van der Wilk, Mark
    Rasmussen, Carl E.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [30] Pseudo-marginal Bayesian inference for Gaussian process latent variable models
    C. Gadd
    S. Wade
    A. A. Shah
    [J]. Machine Learning, 2021, 110 : 1105 - 1143