Pseudo-marginal Bayesian inference for Gaussian process latent variable models

被引:0
|
作者
Gadd, C. [2 ]
Wade, S. [3 ,4 ]
Shah, A. A. [1 ]
机构
[1] Chongqing Univ, Key Lab Lowgrade Energy Utilizat Technol & Syst, Chongqing 400044, Peoples R China
[2] Univ Warwick, Warwick Ctr Predict Modelling, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[4] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
关键词
Gaussian process; Latent variable model; Approximate inference; Variational; Collapsed Gibbs sampling;
D O I
10.1007/s10994-021-05971-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Bayesian inference framework for supervised Gaussian process latent variable models is introduced. The framework overcomes the high correlations between latent variables and hyperparameters by collapsing the statistical model through approximate integration of the latent variables. Using an unbiased pseudo estimate for the marginal likelihood, the exact hyperparameter posterior can then be explored using collapsed Gibbs sampling and, conditional on these samples, the exact latent posterior can be explored through elliptical slice sampling. The framework is tested on both simulated and real examples. When compared with the standard approach based on variational inference, this approach leads to significant improvements in the predictive accuracy and quantification of uncertainty, as well as a deeper insight into the challenges of performing inference in this class of models.
引用
收藏
页码:1105 / 1143
页数:39
相关论文
共 50 条
  • [1] Pseudo-marginal Bayesian inference for Gaussian process latent variable models
    C. Gadd
    S. Wade
    A. A. Shah
    [J]. Machine Learning, 2021, 110 : 1105 - 1143
  • [2] Pseudo-Marginal Bayesian Inference for Gaussian Processes
    Filippone, Maurizio
    Girolami, Mark
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (11) : 2214 - 2226
  • [3] Bayesian Inference for Gaussian Process Classifiers with Annealing and Pseudo-Marginal MCMC
    Filippone, Maurizio
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 614 - 619
  • [4] Fully Bayesian Inference for Latent Variable Gaussian Process Models
    Yerramilli, Suraj
    Iyer, Akshay
    Chen, Wei
    Apley, Daniel W.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2023, 11 (04): : 1357 - 1381
  • [5] Bayesian Inference for Irreducible Diffusion Processes Using the Pseudo-Marginal Approach
    Stramer, Osnat
    Bognar, Matthew
    [J]. BAYESIAN ANALYSIS, 2011, 6 (02): : 231 - 258
  • [6] Bayesian covariance estimation and inference in latent Gaussian process models
    Earls, Cecilia
    Hooker, Giles
    [J]. STATISTICAL METHODOLOGY, 2014, 18 : 79 - 100
  • [7] Bayesian Filtering with Online Gaussian Process Latent Variable Models
    Wang, Yali
    Brubaker, Marcus A.
    Chaib-draa, Brahim
    Urtasun, Raquel
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2014, : 849 - 857
  • [8] Inference of geostatistical hyperparameters with the correlated pseudo-marginal method
    Friedli, Lea
    Linde, Niklas
    Ginsbourger, David
    Visentini, Alejandro Fernandez
    Doucet, Arnaud
    [J]. ADVANCES IN WATER RESOURCES, 2023, 173
  • [9] Accelerating pseudo-marginal MCMC using Gaussian processes
    Drovandi, Christopher C.
    Moores, Matthew T.
    Boys, Richard J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 118 : 1 - 17
  • [10] Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
    Gal, Yarin
    van der Wilk, Mark
    Rasmussen, Carl E.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27