Stability of periodic steady-state solutions to a non-isentropic Euler–Maxwell system

被引:1
|
作者
Cunming Liu
Yue-Jun Peng
机构
[1] Qufu Normal University,Department of Mathematics
[2] Taiyuan University of Technology,Department of Mathematics
[3] Université Clermont Auvergne,undefined
[4] CNRS,undefined
[5] Laboratoire de Mathématiques Blaise Pascal,undefined
关键词
Euler–Maxwell system; Global smooth solution; Stability; Steady-state solution; Energy estimate; 35B40; 35Q60; 35Q35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with a stability problem in a periodic domain for a non-isentropic Euler–Maxwell system without temperature diffusion term. This system is used to describe the dynamics of electrons in magnetized plasmas when the ion density is a given smooth function which can be large. When the initial data are close to the steady states of the system, we show the global existence of smooth solutions which converge toward the steady states as the time tends to infinity. We make a change of unknown variables and choose a non-diagonal symmetrizer of the full Euler equations to get the dissipation estimates. We also adopt an induction argument on the order of derivatives of solutions in energy estimates to get the stability result.
引用
收藏
相关论文
共 50 条
  • [1] Stability of periodic steady-state solutions to a non-isentropic Euler-Maxwell system
    Liu, Cunming
    Peng, Yue-Jun
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):
  • [2] Stability of periodic steady-state solutions to a non-isentropic Euler Poisson system
    Liu, Cunming
    Peng, Yue-Jun
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (11) : 5497 - 5517
  • [3] Stability of non-constant steady-state solutions for non-isentropic Euler-Maxwell system with a temperature damping term
    Feng, Yue-Hong
    Wang, Shu
    Li, Xin
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) : 2514 - 2528
  • [4] Stability of non-constant steady-state solutions for bipolar non-isentropic Euler–Maxwell equations with damping terms
    Xin Li
    Shu Wang
    Yue-Hong Feng
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [5] Stability of non-constant steady-state solutions for bipolar non-isentropic Euler-Maxwell equations with damping terms
    Li, Xin
    Wang, Shu
    Feng, Yue-Hong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (05):
  • [6] Stability of stationary solutions for the non-isentropic Euler-Maxwell system in the whole space
    Yoshihiro Ueda
    Shuichi Kawashima
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 787 - 797
  • [7] Stability of stationary solutions for the non-isentropic Euler-Maxwell system in the whole space
    Ueda, Yoshihiro
    Kawashima, Shuichi
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (02): : 787 - 797
  • [8] Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system
    Feng, Yue-Hong
    Wang, Shu
    Kawashima, Shuichi
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (14): : 2851 - 2884
  • [9] Global solutions to the bipolar non-isentropic Euler-Maxwell system in the Besov framework
    Zhao, Shiqiang
    Zhang, Kaijun
    [J]. APPLICABLE ANALYSIS, 2024, 103 (13) : 2410 - 2430
  • [10] Decay estimates of solutions to the bipolar non-isentropic compressible Euler-Maxwell system
    Tan, Zhong
    Wang, Yong
    Tong, Leilei
    [J]. NONLINEARITY, 2017, 30 (10) : 3743 - 3772