Global solutions to the bipolar non-isentropic Euler-Maxwell system in the Besov framework

被引:0
|
作者
Zhao, Shiqiang [1 ]
Zhang, Kaijun [1 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun, Peoples R China
基金
中国国家自然科学基金;
关键词
Euler-Maxwell system; Littlewood-Paley theory; global smooth solutions; asymptotic behavior; REGULARITY-LOSS TYPE; ASYMPTOTIC DECAY; SMOOTH SOLUTIONS; CLASSICAL-SOLUTIONS; RELAXATION LIMIT; CAUCHY-PROBLEM; EXISTENCE; BEHAVIOR;
D O I
10.1080/00036811.2023.2299705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the bipolar non-isentropic compressible Euler-Maxwell system in $ \mathbb {R}<^>{3} $ R3 and $ \mathbb {T}<^>{3} $ T3. For both problems, we establish the global existence of smooth solutions in the general Besov spaces, which covers the usual Sobolev spaces with higher regularity and the critical Besov space, when the initial perturbations around the constant states are small enough. As a byproduct, we obtain the large-time asymptotic behavior of the global solutions near the equilibrium state in the general Besov spaces with relatively lower regularity. The proof is based on the technical Fourier frequency-localization method developed through the Littlewood-Paley theory, but some new development and technique are proposed for treating the strong coupling and nonlinearity for the bipolar non-isentropic case.
引用
收藏
页码:2410 / 2430
页数:21
相关论文
共 50 条
  • [1] Decay estimates of solutions to the bipolar non-isentropic compressible Euler-Maxwell system
    Tan, Zhong
    Wang, Yong
    Tong, Leilei
    [J]. NONLINEARITY, 2017, 30 (10) : 3743 - 3772
  • [2] Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system
    Feng, Yue-Hong
    Wang, Shu
    Kawashima, Shuichi
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (14): : 2851 - 2884
  • [3] Stability of stationary solutions for the non-isentropic Euler-Maxwell system in the whole space
    Yoshihiro Ueda
    Shuichi Kawashima
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 787 - 797
  • [4] Stability of stationary solutions for the non-isentropic Euler-Maxwell system in the whole space
    Ueda, Yoshihiro
    Kawashima, Shuichi
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (02): : 787 - 797
  • [5] Uniform global convergence of non-isentropic Euler-Maxwell systems with dissipation
    Yang, Yong-Fu
    Hu, Hui-Fang
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 47 : 332 - 347
  • [6] Stability of periodic steady-state solutions to a non-isentropic Euler-Maxwell system
    Liu, Cunming
    Peng, Yue-Jun
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):
  • [7] Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system
    JIANG Song
    LI FuCai
    [J]. Science China Mathematics, 2015, 58 (01) : 61 - 76
  • [8] Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system
    Jiang Song
    Li FuCai
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (01) : 61 - 76
  • [9] Scaling limits of non-isentropic Euler-Maxwell equations for plasmas
    Jianwei Yang
    Qinghua Gao
    Qingnian Zhang
    [J]. Advances in Difference Equations, 2011
  • [10] Scaling limits of non-isentropic Euler-Maxwell equations for plasmas
    Yang, Jianwei
    Gao, Qinghua
    Zhang, Qingnian
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2011,