Decay estimates of solutions to the bipolar non-isentropic compressible Euler-Maxwell system

被引:5
|
作者
Tan, Zhong [1 ,2 ]
Wang, Yong [3 ]
Tong, Leilei [1 ,2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modeling & Sci Comp, Xiamen 361005, Fujian, Peoples R China
[3] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
bipolar non-isentropic Euler-Maxwell system; global smooth solution; decay estimates; energy method; GLOBALLY SMOOTH SOLUTIONS; ASYMPTOTIC-BEHAVIOR; CAUCHY-PROBLEM; TIME BEHAVIOR; BESOV-SPACES; EQUATIONS; EXISTENCE; CONVERGENCE; STABILITY;
D O I
10.1088/1361-6544/aa7eff
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the global existence and large time behavior of solutions near a constant equilibrium state to the bipolar non-isentropic compressible Euler-Maxwell system in R-3, where the background magnetic field could be non-zero. The global existence is established under the assumption that the H-3 norm of the initial data is small, but its higher order derivatives could be large. Combining the negative Sobolev (or Besov) estimates with the interpolation estimates, we prove the optimal time decay rates of the solution and its higher order spatial derivatives. In this sense, our results improve the similar ones in Wang et al
引用
收藏
页码:3743 / 3772
页数:30
相关论文
共 50 条
  • [1] Global solutions to the bipolar non-isentropic Euler-Maxwell system in the Besov framework
    Zhao, Shiqiang
    Zhang, Kaijun
    [J]. APPLICABLE ANALYSIS, 2024, 103 (13) : 2410 - 2430
  • [2] Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system
    Feng, Yue-Hong
    Wang, Shu
    Kawashima, Shuichi
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (14): : 2851 - 2884
  • [3] Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system
    JIANG Song
    LI FuCai
    [J]. Science China Mathematics, 2015, 58 (01) : 61 - 76
  • [4] Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system
    Jiang Song
    Li FuCai
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (01) : 61 - 76
  • [5] Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system
    Song Jiang
    FuCai Li
    [J]. Science China Mathematics, 2015, 58 : 61 - 76
  • [6] Stability of stationary solutions for the non-isentropic Euler-Maxwell system in the whole space
    Yoshihiro Ueda
    Shuichi Kawashima
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 787 - 797
  • [7] Stability of stationary solutions for the non-isentropic Euler-Maxwell system in the whole space
    Ueda, Yoshihiro
    Kawashima, Shuichi
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (02): : 787 - 797
  • [8] Approximation of a compressible Euler-Poisson equations by a non-isentropic Euler-Maxwell equations
    Yang, Jianwei
    Wang, Shu
    Wang, Fuqiang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) : 6142 - 6151
  • [9] Large-time behavior of solutions to the compressible non-isentropic Euler-Maxwell system in R3
    Tan, Zhong
    Wang, Yong
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 15 : 187 - 204
  • [10] Stability of periodic steady-state solutions to a non-isentropic Euler-Maxwell system
    Liu, Cunming
    Peng, Yue-Jun
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):