Decay estimates of solutions to the bipolar non-isentropic compressible Euler-Maxwell system

被引:5
|
作者
Tan, Zhong [1 ,2 ]
Wang, Yong [3 ]
Tong, Leilei [1 ,2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modeling & Sci Comp, Xiamen 361005, Fujian, Peoples R China
[3] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
bipolar non-isentropic Euler-Maxwell system; global smooth solution; decay estimates; energy method; GLOBALLY SMOOTH SOLUTIONS; ASYMPTOTIC-BEHAVIOR; CAUCHY-PROBLEM; TIME BEHAVIOR; BESOV-SPACES; EQUATIONS; EXISTENCE; CONVERGENCE; STABILITY;
D O I
10.1088/1361-6544/aa7eff
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the global existence and large time behavior of solutions near a constant equilibrium state to the bipolar non-isentropic compressible Euler-Maxwell system in R-3, where the background magnetic field could be non-zero. The global existence is established under the assumption that the H-3 norm of the initial data is small, but its higher order derivatives could be large. Combining the negative Sobolev (or Besov) estimates with the interpolation estimates, we prove the optimal time decay rates of the solution and its higher order spatial derivatives. In this sense, our results improve the similar ones in Wang et al
引用
收藏
页码:3743 / 3772
页数:30
相关论文
共 50 条
  • [21] Rigorous derivation of incompressible type Euler equations from non-isentropic Euler-Maxwell equations
    Yang, Jianwei
    Wang, Shu
    Li, Yong
    Luo, Dang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (11) : 3613 - 3625
  • [22] ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE COMPRESSIBLE BIPOLAR EULER-MAXWELL SYSTEM IN R3
    Tan, Zhong
    Wang, Yong
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (07) : 1683 - 1710
  • [23] Stability of non-constant equilibrium solutions for two-fluid non-isentropic Euler-Maxwell systems arising in plasmas
    Feng, Yue-Hong
    Li, Xin
    Wang, Shu
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (07)
  • [24] Stability of periodic steady-state solutions to a non-isentropic Euler–Maxwell system
    Cunming Liu
    Yue-Jun Peng
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [25] THE ASYMPTOTIC BEHAVIOR OF GLOBALLY SMOOTH SOLUTIONS OF BIPOLAR NONISENTROPIC COMPRESSIBLE EULER-MAXWELL SYSTEM FOR PLASMA
    Wang, Shu
    Feng, Yuehong
    Li, Xin
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (05) : 3429 - 3457
  • [26] Zero-Relaxation Limits of the Non-Isentropic Euler-Maxwell System for Well/Ill-Prepared Initial Data
    Feng, Yue-Hong
    Li, Xin
    Mei, Ming
    Wang, Shu
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (05)
  • [27] Compressible Euler-Maxwell equations
    Chen, GQ
    Jerome, JW
    Wang, DH
    [J]. TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5): : 311 - 331
  • [28] Conical shock wave for non-isentropic compressible Euler system of equations
    Li, Dening
    Zhang, Zheng
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2016, 13 (02) : 215 - 231
  • [29] The global convergence of non-isentropic Euler-Maxwell equations via Infinity-Ion-Mass limit
    Feng, Yue-Hong
    Li, Xin
    Wang, Shu
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):
  • [30] Analysis of non-isentropic compressible Euler equations with relaxation
    Li, Tong
    Zhao, Kun
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (11) : 6338 - 6367