Stability of stationary solutions for the non-isentropic Euler-Maxwell system in the whole space

被引:2
|
作者
Ueda, Yoshihiro [1 ]
Kawashima, Shuichi [2 ]
机构
[1] Kobe Univ, Fac Maritime Sci, Kobe, Hyogo 6580022, Japan
[2] Kyushu Univ, Fac Math, Fukuoka 8190395, Japan
来源
基金
日本学术振兴会;
关键词
asymptotic stability; regularity-loss; stationary solution; REGULARITY-LOSS TYPE; DISSIPATIVE PLATE EQUATION; GLOBAL EXISTENCE; DECAY PROPERTY; TIMOSHENKO SYSTEM;
D O I
10.1007/s00574-016-0186-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss the asymptotic stability of stationary solutions for the non-isentropic Euler-Maxwell system in R-3. It is known in the authors' previous works [17, 18, 19] that the Euler-Maxwell system verifies the decay property of the regularity-loss type. In this paper we first prove the existence and uniqueness of a small stationary solution. Then we show that the non-stationary problemhas a global solution in a neighborhood of the stationary solution under smallness condition on the initial perturbation. Moreover, we show the asymptotic convergence of the solution toward the stationary solution as time tends to infinity. The crucial point of the proof is to derive a priori estimates by using the energy method.
引用
收藏
页码:787 / 797
页数:11
相关论文
共 50 条
  • [1] Stability of stationary solutions for the non-isentropic Euler-Maxwell system in the whole space
    Yoshihiro Ueda
    Shuichi Kawashima
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 787 - 797
  • [2] Stability of periodic steady-state solutions to a non-isentropic Euler-Maxwell system
    Liu, Cunming
    Peng, Yue-Jun
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):
  • [3] Global solutions to the bipolar non-isentropic Euler-Maxwell system in the Besov framework
    Zhao, Shiqiang
    Zhang, Kaijun
    [J]. APPLICABLE ANALYSIS, 2024, 103 (13) : 2410 - 2430
  • [4] Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system
    Feng, Yue-Hong
    Wang, Shu
    Kawashima, Shuichi
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (14): : 2851 - 2884
  • [5] Decay estimates of solutions to the bipolar non-isentropic compressible Euler-Maxwell system
    Tan, Zhong
    Wang, Yong
    Tong, Leilei
    [J]. NONLINEARITY, 2017, 30 (10) : 3743 - 3772
  • [6] Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system
    JIANG Song
    LI FuCai
    [J]. Science China Mathematics, 2015, 58 (01) : 61 - 76
  • [7] Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system
    Jiang Song
    Li FuCai
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (01) : 61 - 76
  • [8] Scaling limits of non-isentropic Euler-Maxwell equations for plasmas
    Jianwei Yang
    Qinghua Gao
    Qingnian Zhang
    [J]. Advances in Difference Equations, 2011
  • [9] Scaling limits of non-isentropic Euler-Maxwell equations for plasmas
    Yang, Jianwei
    Gao, Qinghua
    Zhang, Qingnian
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [10] Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system
    Song Jiang
    FuCai Li
    [J]. Science China Mathematics, 2015, 58 : 61 - 76