Stability of non-constant steady-state solutions for bipolar non-isentropic Euler-Maxwell equations with damping terms

被引:3
|
作者
Li, Xin [1 ]
Wang, Shu [1 ]
Feng, Yue-Hong [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Ping Le Yuan 100, Beijing 100124, Peoples R China
来源
基金
中国博士后科学基金;
关键词
Bipolar non-isentropic Euler-Maxwell equations; Plasmas; Non-constant steady-state solutions; Global smooth solutions; Longtime behavior; GLOBALLY SMOOTH SOLUTIONS; EQUILIBRIUM SOLUTIONS; ASYMPTOTIC-BEHAVIOR; CLASSICAL-SOLUTIONS; HYPERBOLIC SYSTEMS; CAUCHY-PROBLEM; EXISTENCE; LIMIT; FLUIDS;
D O I
10.1007/s00033-016-0728-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the periodic problem for bipolar non-isentropic Euler-Maxwell equations with damping terms in plasmas. By means of an induction argument on the order of the time-space derivatives of solutions in energy estimates, the global smooth solution with small amplitude was established close to a non-constant steady-state solution with asymptotic stability property. Furthermore, we obtain the global stability of solutions with exponential decay in time near the non-constant steady-states for bipolar non-isentropic Euler-Poisson equations. This phenomenon on the charge transport shows the essential relation and difference between the bipolar non-isentropic and the bipolar isentropic Euler-Maxwell/Poisson equations.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Stability of non-constant steady-state solutions for bipolar non-isentropic Euler–Maxwell equations with damping terms
    Xin Li
    Shu Wang
    Yue-Hong Feng
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [2] Stability of non-constant steady-state solutions for non-isentropic Euler-Maxwell system with a temperature damping term
    Feng, Yue-Hong
    Wang, Shu
    Li, Xin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) : 2514 - 2528
  • [3] Stability of periodic steady-state solutions to a non-isentropic Euler-Maxwell system
    Liu, Cunming
    Peng, Yue-Jun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):
  • [4] Stability of non-constant equilibrium solutions for Euler-Maxwell equations
    Peng, Yue-Jun
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (01): : 39 - 67
  • [5] Stability of periodic steady-state solutions to a non-isentropic Euler–Maxwell system
    Cunming Liu
    Yue-Jun Peng
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [6] Stability of non-constant equilibrium solutions for two-fluid non-isentropic Euler-Maxwell systems arising in plasmas
    Feng, Yue-Hong
    Li, Xin
    Wang, Shu
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (07)
  • [7] Global solutions to the bipolar non-isentropic Euler-Maxwell system in the Besov framework
    Zhao, Shiqiang
    Zhang, Kaijun
    APPLICABLE ANALYSIS, 2024, 103 (13) : 2410 - 2430
  • [8] Decay estimates of solutions to the bipolar non-isentropic compressible Euler-Maxwell system
    Tan, Zhong
    Wang, Yong
    Tong, Leilei
    NONLINEARITY, 2017, 30 (10) : 3743 - 3772
  • [9] Stability of stationary solutions for the non-isentropic Euler-Maxwell system in the whole space
    Yoshihiro Ueda
    Shuichi Kawashima
    Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 787 - 797
  • [10] Scaling limits of non-isentropic Euler-Maxwell equations for plasmas
    Jianwei Yang
    Qinghua Gao
    Qingnian Zhang
    Advances in Difference Equations, 2011