Stability of periodic steady-state solutions to a non-isentropic Euler–Maxwell system

被引:1
|
作者
Cunming Liu
Yue-Jun Peng
机构
[1] Qufu Normal University,Department of Mathematics
[2] Taiyuan University of Technology,Department of Mathematics
[3] Université Clermont Auvergne,undefined
[4] CNRS,undefined
[5] Laboratoire de Mathématiques Blaise Pascal,undefined
关键词
Euler–Maxwell system; Global smooth solution; Stability; Steady-state solution; Energy estimate; 35B40; 35Q60; 35Q35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with a stability problem in a periodic domain for a non-isentropic Euler–Maxwell system without temperature diffusion term. This system is used to describe the dynamics of electrons in magnetized plasmas when the ion density is a given smooth function which can be large. When the initial data are close to the steady states of the system, we show the global existence of smooth solutions which converge toward the steady states as the time tends to infinity. We make a change of unknown variables and choose a non-diagonal symmetrizer of the full Euler equations to get the dissipation estimates. We also adopt an induction argument on the order of derivatives of solutions in energy estimates to get the stability result.
引用
收藏
相关论文
共 50 条
  • [31] Combined relaxation and non-relativistic limit of non-isentropic Euler-Maxwell equations
    Yang, Jianwei
    [J]. APPLICABLE ANALYSIS, 2015, 94 (04) : 747 - 760
  • [32] Global existence and stability of temporal periodic solution to non-isentropic compressible Euler equations with a source term
    Ma, Shuyue
    Sun, Jiawei
    Yu, Huimin
    [J]. COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (02): : 245 - 266
  • [33] Rigorous derivation of incompressible type Euler equations from non-isentropic Euler-Maxwell equations
    Yang, Jianwei
    Wang, Shu
    Li, Yong
    Luo, Dang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (11) : 3613 - 3625
  • [34] On rotating star solutions to the non-isentropic Euler-Poisson equations
    Wu, Yilun
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (12) : 7161 - 7198
  • [35] The incompressible limit of the non-isentropic Euler equations
    Métivier, G
    Schochet, S
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 158 (01) : 61 - 90
  • [36] Weak stability of transonic contact discontinuities in three-dimensional steady non-isentropic compressible Euler flows
    Ya-Guang Wang
    Hairong Yuan
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 341 - 388
  • [37] Weak stability of transonic contact discontinuities in three-dimensional steady non-isentropic compressible Euler flows
    Wang, Ya-Guang
    Yuan, Hairong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (02): : 341 - 388
  • [38] The Incompressible Limit of the Non-Isentropic Euler Equations
    G. Métivier
    S. Schochet
    [J]. Archive for Rational Mechanics and Analysis, 2001, 158 : 61 - 90
  • [39] LONG WAVELENGTH LIMIT OF NON-ISENTROPIC EULER-POISSON SYSTEM
    Zhao, Lixian
    Yang, Xiongfeng
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, : 3547 - 3571
  • [40] Conical shock wave for non-isentropic compressible Euler system of equations
    Li, Dening
    Zhang, Zheng
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2016, 13 (02) : 215 - 231