Real-time thinning algorithms for 2D and 3D images using GPU processors

被引:0
|
作者
Martin G. Wagner
机构
[1] University of Wisconsin,Department of Medical Physics
来源
关键词
Centerline; GPU Programming; Medial axis; Skeletonization; Thinning;
D O I
暂无
中图分类号
学科分类号
摘要
The skeletonization of binary images is a common task in many image processing and machine learning applications. Some of these applications require very fast image processing. We propose novel techniques for efficient 2D and 3D thinning of binary images using GPU processors. The algorithms use bit-encoded binary images to process multiple points simultaneously in each thread. The simpleness of a point is determined based on Boolean algebra using only bitwise logical operators. This avoids computationally expensive decoding and encoding steps and allows for additional parallelization. The 2D algorithm is evaluated using a data set of handwritten characters images. It required an average computation time of 3.53 ns for 32 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 32 pixels and 0.25 ms for 1024 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1024 pixels. This is 52–18,380 times faster than a multi-threaded border-parallel algorithm. The 3D algorithm was evaluated based on clinical images of the human vasculature and required computation times of 0.27 ms for 128 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 128 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 128 voxels and 20.32 ms for 512 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 512 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 512 voxels, which is 32–46 times faster than the compared border-sequential algorithm using the same GPU processor. The proposed techniques enable efficient real-time 2D and 3D skeletonization of binary images, which could improve the performance of many existing machine learning applications.
引用
收藏
页码:1255 / 1266
页数:11
相关论文
共 50 条
  • [41] Real-time 3D cone-beam reconstruction using GPU's
    Stsepankou, D.
    Hesser, J.
    Boda-Heggemann, J.
    Wertz, H. -J.
    Lohr, F.
    Wenz, F.
    ONKOLOGIE, 2008, 31 : 177 - 178
  • [42] New parallel thinning algorithms for 2D grayscale images
    Lohou, C
    Bertrand, G
    VISION GEOMETRY IX, 2000, 4117 : 58 - 69
  • [43] 3D object repair using 2D algorithms
    Stavrou, Pavlos
    Mavridis, Pavlos
    Papaioannou, Georgios
    Passalis, Georgios
    Theoharis, Theoharis
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 2, PROCEEDINGS, 2006, 3992 : 271 - 278
  • [44] Real-Time Simulation and Rendering of 3D Smoke on GPU Programme
    Chen Ge
    Li Yunfei
    Yin Xue
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 3575 - +
  • [45] Real-time 3D fluid simulation on GPU with complex obstacles
    Liu, You-Quan
    Liu, Xue-Hui
    Wu, En-Hua
    Ruan Jian Xue Bao/Journal of Software, 2006, 17 (03): : 568 - 576
  • [46] Real-time 3D fluid simulation on GPU with complex obstacles
    Liu, Y
    Liu, X
    Wui, E
    12TH PACIFIC CONFERENCE ON COMPUTER GRAPHICS AND APPLICATIONS, PROCEEDINGS, 2004, : 247 - 256
  • [47] Realistic real-time water effects in 2D images
    Rzeszutek, Richard
    Androutsos, Dimitrios
    2008 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-4, 2008, : 939 - 942
  • [48] GPU Methods for Real-Time Haptic Interaction with 3D Fluids
    Yang, Meng
    Lu, Jingwan
    Safonova, Alla
    Kuchenbecker, Katherine J.
    2009 IEEE INTERNATIONAL WORKSHOP ON HAPTIC AUDIO VISUAL ENVIRONMENT AND GAMES, 2009, : 24 - +
  • [49] 2D/3D image registration on the GPU
    Kubias A.
    Deinzer F.
    Feldmann T.
    Paulus D.
    Schreiber B.
    Brunner Th.
    Pattern Recognition and Image Analysis, 2008, 18 (03) : 381 - 389
  • [50] High-accuracy, real-time pedestrian detection system using 2D and 3D features
    Chambers, David R.
    Flannigan, Clay
    Wheeler, Benjamin
    THREE-DIMENSIONAL IMAGING, VISUALIZATION, AND DISPLAY 2012, 2012, 8384