Real-time thinning algorithms for 2D and 3D images using GPU processors

被引:0
|
作者
Martin G. Wagner
机构
[1] University of Wisconsin,Department of Medical Physics
来源
关键词
Centerline; GPU Programming; Medial axis; Skeletonization; Thinning;
D O I
暂无
中图分类号
学科分类号
摘要
The skeletonization of binary images is a common task in many image processing and machine learning applications. Some of these applications require very fast image processing. We propose novel techniques for efficient 2D and 3D thinning of binary images using GPU processors. The algorithms use bit-encoded binary images to process multiple points simultaneously in each thread. The simpleness of a point is determined based on Boolean algebra using only bitwise logical operators. This avoids computationally expensive decoding and encoding steps and allows for additional parallelization. The 2D algorithm is evaluated using a data set of handwritten characters images. It required an average computation time of 3.53 ns for 32 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 32 pixels and 0.25 ms for 1024 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1024 pixels. This is 52–18,380 times faster than a multi-threaded border-parallel algorithm. The 3D algorithm was evaluated based on clinical images of the human vasculature and required computation times of 0.27 ms for 128 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 128 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 128 voxels and 20.32 ms for 512 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 512 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 512 voxels, which is 32–46 times faster than the compared border-sequential algorithm using the same GPU processor. The proposed techniques enable efficient real-time 2D and 3D skeletonization of binary images, which could improve the performance of many existing machine learning applications.
引用
下载
收藏
页码:1255 / 1266
页数:11
相关论文
共 50 条
  • [21] Automatic 2D to 3D conversion implemented for real-time applications
    Ponomaryov, Volodymyr
    Ramos-Diaz, Eduardo
    Gonzalez Huitron, Victor
    REAL-TIME IMAGE AND VIDEO PROCESSING 2014, 2014, 9139
  • [22] Real-Time Reconstruction of Underwater Environments: from 2D to 3D
    Rossi, Matija
    Scaradozzi, David
    Drap, Pierre
    Recanatini, Pietro
    Dooly, Gerard
    Omerdic, Edin
    Toal, Daniel
    OCEANS 2015 - MTS/IEEE WASHINGTON, 2015,
  • [23] Development of a Real-Time 2D and 3D Echocardiographic Diagnostic System
    Hillier, Daniel
    Czeilinger, Zsolt
    Vobornik, Andras
    Szalka, Zsolt
    Soos, Gergely
    Kek, Laszlo
    Binzberger, Viktor
    Vilarino, David Lopez
    Rekeczky, Csaba
    ERCIM NEWS, 2005, (60): : 73 - 74
  • [24] A CNN Regression Approach for Real-Time 2D/3D Registration
    Miao, Shun
    Wang, Z. Jane
    Liao, Rui
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1352 - 1363
  • [25] Real-time 2D/ 3D image processing with deep learning
    Multimedia Tools and Applications, 2021, 80 : 35771 - 35771
  • [26] Real-time registration of 3D to 2D ultrasound images for image-guided prostate biopsy
    Gillies, Derek J.
    Gardi, Lori
    De Silva, Tharindu
    Zhao, Shuang-ren
    Fenster, Aaron
    MEDICAL PHYSICS, 2017, 44 (09) : 4708 - 4723
  • [27] Real-time GPU-based 3D Deconvolution
    Bruce, Marc A.
    Butte, Manish J.
    OPTICS EXPRESS, 2013, 21 (04): : 4766 - 4773
  • [28] A survey of 3D reconstruction algorithms from 2D images
    Hajjdiab, Hassan
    IMECS 2006: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, 2006, : 562 - 567
  • [29] Dense 3D Face Alignment from 2D Videos in Real-Time
    Jeni, Laszlo A.
    Cohn, Jeffrey F.
    Kanade, Takeo
    2015 11TH IEEE INTERNATIONAL CONFERENCE AND WORKSHOPS ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG), VOL. 1, 2015,
  • [30] From 2D to 3D real-time expression transfer for facial animation
    Ekmen, Beste
    Ekenel, Hazim Kemal
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (09) : 12519 - 12535