Real-time thinning algorithms for 2D and 3D images using GPU processors

被引:0
|
作者
Martin G. Wagner
机构
[1] University of Wisconsin,Department of Medical Physics
来源
关键词
Centerline; GPU Programming; Medial axis; Skeletonization; Thinning;
D O I
暂无
中图分类号
学科分类号
摘要
The skeletonization of binary images is a common task in many image processing and machine learning applications. Some of these applications require very fast image processing. We propose novel techniques for efficient 2D and 3D thinning of binary images using GPU processors. The algorithms use bit-encoded binary images to process multiple points simultaneously in each thread. The simpleness of a point is determined based on Boolean algebra using only bitwise logical operators. This avoids computationally expensive decoding and encoding steps and allows for additional parallelization. The 2D algorithm is evaluated using a data set of handwritten characters images. It required an average computation time of 3.53 ns for 32 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 32 pixels and 0.25 ms for 1024 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1024 pixels. This is 52–18,380 times faster than a multi-threaded border-parallel algorithm. The 3D algorithm was evaluated based on clinical images of the human vasculature and required computation times of 0.27 ms for 128 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 128 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 128 voxels and 20.32 ms for 512 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 512 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 512 voxels, which is 32–46 times faster than the compared border-sequential algorithm using the same GPU processor. The proposed techniques enable efficient real-time 2D and 3D skeletonization of binary images, which could improve the performance of many existing machine learning applications.
引用
收藏
页码:1255 / 1266
页数:11
相关论文
共 50 条
  • [31] Implementation of real-time 2D/3D image registration in radiation oncology
    Gendrin, C.
    Weber, C.
    Figl, M.
    Georg, D.
    Bergmann, H.
    Birkfellner, W.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 6, 2009, 25 : 51 - +
  • [32] From 2D to 3D real-time expression transfer for facial animation
    Beste Ekmen
    Hazım Kemal Ekenel
    Multimedia Tools and Applications, 2019, 78 : 12519 - 12535
  • [33] Flexible real-time natural 2D color and 3D shape measurement
    Ou, Pan
    Li, Beiwen
    Wang, Yajun
    Zhang, Song
    OPTICS EXPRESS, 2013, 21 (14): : 16736 - 16741
  • [34] Reconstruction of Intrafractional 3D Images From Real-Time 2D KV Radiograph and 4DCT
    Kim, J.
    Chen, G.
    Tai, A.
    Lim, S.
    Keiper, T.
    Li, X.
    Zhong, H.
    MEDICAL PHYSICS, 2020, 47 (06) : E655 - E656
  • [35] Photothermal converters for quantitative 2D and 3D real-time TeraHertz imaging
    Pradere, Christophe
    Caumes, Jean-Pascal
    Balageas, Daniel
    Salort, Simon
    Abraham, Emmanuel
    Chassagne, Bruno
    Batsale, Jean-Christophe
    QUANTITATIVE INFRARED THERMOGRAPHY JOURNAL, 2010, 7 (02) : 217 - 235
  • [36] Virtual RoboCup: Real-time 3D visualization of 2D soccer games
    Jung, B
    Oesker, M
    Hecht, H
    ROBOCUP-99: ROBOT SOCCER WORLD CUP III, 2000, 1856 : 331 - 344
  • [37] MONITORING LUNG TUMOR MOTION BY REAL-TIME 2D/3D REGISTRATION
    Gendrin, C.
    Weber, C.
    Bloch, C.
    Stock, M.
    Georg, D.
    Figl, M.
    Bergmann, H.
    Birkfellner, W.
    RADIOTHERAPY AND ONCOLOGY, 2011, 99 : S453 - S453
  • [38] Ability and limitation of real-time 3D echocardiography for acquiring standard 2D images from 2 volume sets
    Takuma, S
    Zwas, DR
    Sciacca, R
    Fard, A
    Chaudhry, H
    Di Tullio, MR
    Homma, S
    CIRCULATION, 1998, 98 (17) : 715 - 715
  • [39] 2D/3D Deep Registration for Real-Time Prostate Biopsy Navigation
    Dupuy, Tamara
    Beitone, Clement
    Troccaz, Jocelyne
    Voros, Sandrine
    MEDICAL IMAGING 2021: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2021, 11598
  • [40] GPU-Based Real-Time RGB-D 3D SLAM
    Lee, Donghwa
    Kim, Hyongjin
    Myung, Hyun
    2012 9TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAL), 2012, : 46 - 48