On conformal capacity and Teichmüller’s modulus problem in space

被引:0
|
作者
Dimitrios Betsakos
机构
[1] University of Helsinki,Department of Mathematics
来源
关键词
Dimensional Plane; Quasiregular Mapping; Extremal Length; Modulus Problem; Rectilinear Segment;
D O I
暂无
中图分类号
学科分类号
摘要
We solve an extremal problem for the conformal capacity of certain space condensers. The extremal condenser is conformally equivalent to Teichmüller’s ring. As an application, we give a dimension-free estimate for the minimal conformal capacity of the condensers with platesE, F such thata, b ∈ E,c, d ∈ F, wherea, b, c, d are given points in\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline R ^n $$ \end{document}.
引用
收藏
页码:201 / 214
页数:13
相关论文
共 50 条
  • [21] Spirals and the Asymptotic Teichmüller Space
    Hideki Miyachi
    Computational Methods and Function Theory, 2014, 14 : 609 - 622
  • [22] Teichmüller Groupoids, and Monodromy in Conformal Field Theory
    Takashi Ichikawa
    Communications in Mathematical Physics, 2004, 246 : 1 - 18
  • [23] Stability conditions and Teichmüller space
    Allegretti, Dylan G. L.
    MATHEMATISCHE ANNALEN, 2024, 390 (3) : 3827 - 3890
  • [24] Comparisons of Metrics on Teichmller Space
    Zongliang SUN Lixin LIU Department of Mathematics
    Chinese Annals of Mathematics,Series B, 2010, (01) : 71 - 84
  • [25] Stars at infinity in Teichmüller space
    Moon Duchin
    Nate Fisher
    Geometriae Dedicata, 2021, 213 : 531 - 545
  • [26] A new coordinate of teichmüller space
    Jinsong Liu
    Science in China Series A: Mathematics, 2001, 44 : 1523 - 1530
  • [27] Statistical Hyperbolicity in Teichmüller Space
    Spencer Dowdall
    Moon Duchin
    Howard Masur
    Geometric and Functional Analysis, 2014, 24 : 748 - 795
  • [28] On the properties of various compactifications of Teichmüller space
    Lixin Liu
    Yaozhong Shi
    Monatshefte für Mathematik, 2022, 198 : 371 - 391
  • [29] Stars at infinity for boundaries of Teichmüller space
    Peijia Liu
    Yaozhong Shi
    Geometriae Dedicata, 2024, 218
  • [30] Harmonic maps and asymptotic Teichmüller space
    Guowu Yao
    manuscripta mathematica, 2007, 122 : 375 - 389