Comparisons of Metrics on Teichmller Space

被引:0
|
作者
Zongliang SUN Lixin LIU Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
Length spectrum metric; Teichmller metric; Thurston’s pseudo-metrics;
D O I
暂无
中图分类号
O174.51 [单复变数函数几何理论];
学科分类号
070104 ;
摘要
For a Riemann surface X of conformally finite type (g,n),let d T,d L and d P i (i=1,2) be the Teichmller metric,the length spectrum metric and Thurston’s pseudometrics on the Teichmller space T (X),respectively.The authors get a description of the Teichmller distance in terms of the Jenkins-Strebel di?erential lengths of simple closed curves.Using this result,by relatively short arguments,some comparisons between d T and d L,d P i (i=1,2) on T ε (X) and T (X) are obtained,respectively.These comparisons improve a corresponding result of Li a little.As applications,the authors first get an alternative proof of the topological equivalence of d T to any one of d L,d P 1 and d P 2 on T (X).Second,a new proof of the completeness of the length spectrum metric from the viewpoint of Finsler geometry is given.Third,a simple proof of the following result of Liu-Papadopoulos is given:a sequence goes to infinity in T (X) with respect to d T if and only if it goes to infinity with respect to d L (as well as d P i (i=1,2)).
引用
收藏
页码:71 / 84
页数:14
相关论文
共 50 条
  • [1] Comparisons of metrics on Teichmüller space
    Zongliang Sun
    Lixin Liu
    [J]. Chinese Annals of Mathematics, Series B, 2010, 31 : 71 - 84
  • [2] Comparisons of Metrics on Teichmller Space
    Zongliang SUN Lixin LIU Department of MathematicsSuzhou UniversitySuzhou JiangsuChinaDepartment of MathematicsZhongshan UniversityGuangzhou China
    [J]. Chinese Annals of Mathematics., 2010, 31 (01) - 84
  • [3] Kobayashi’s and Teichmüller’s metrics on the Teichmüller space of symmetric circle homeomorphisms
    Jun Hu
    Yun Ping Jiang
    Zhe Wang
    [J]. Acta Mathematica Sinica, English Series, 2011, 27 : 617 - 624
  • [4] Energy, Hopf Differential, and Metrics on Teichmüller Space
    Zongliang Sun
    Hui Guo
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1223 - 1231
  • [5] Hyperbolic metrics on universal Teichmüller space and extremal problems
    Samuel L. Krushkal
    [J]. Journal of Mathematical Sciences, 2012, 182 (1) : 70 - 86
  • [6] Teichmüller contraction in the Teichmüller space of a closed set in the sphere
    Sudeb Mitra
    [J]. Israel Journal of Mathematics, 2001, 125 : 45 - 51
  • [7] Rigidity of Teichmüller space
    Georgios Daskalopoulos
    Chikako Mese
    [J]. Inventiones mathematicae, 2021, 224 : 791 - 916
  • [8] Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space
    Hideki Miyachi
    [J]. Geometriae Dedicata, 2008, 137 : 113 - 141
  • [9] On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space
    D. Alessandrini
    L. Liu
    A. Papadopoulos
    W. Su
    [J]. Monatshefte für Mathematik, 2016, 179 : 165 - 189
  • [10] Integrable Teichmüller space
    Xueping Liu
    Yuliang Shen
    [J]. Mathematische Zeitschrift, 2022, 302 : 2233 - 2251