On conformal capacity and Teichmüller’s modulus problem in space

被引:0
|
作者
Dimitrios Betsakos
机构
[1] University of Helsinki,Department of Mathematics
来源
关键词
Dimensional Plane; Quasiregular Mapping; Extremal Length; Modulus Problem; Rectilinear Segment;
D O I
暂无
中图分类号
学科分类号
摘要
We solve an extremal problem for the conformal capacity of certain space condensers. The extremal condenser is conformally equivalent to Teichmüller’s ring. As an application, we give a dimension-free estimate for the minimal conformal capacity of the condensers with platesE, F such thata, b ∈ E,c, d ∈ F, wherea, b, c, d are given points in\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline R ^n $$ \end{document}.
引用
收藏
页码:201 / 214
页数:13
相关论文
共 50 条
  • [31] Maximal surfaces and the universal Teichmüller space
    Francesco Bonsante
    Jean-Marc Schlenker
    Inventiones mathematicae, 2010, 182 : 279 - 333
  • [32] Plumbing coordinates on Teichmüller space: A counterexample
    Vladimir Hinich
    Israel Journal of Mathematics, 2010, 175 : 151 - 156
  • [33] Some characterizations of the integrable Teichmüller space
    ShuAn Tang
    Science China Mathematics, 2013, 56 : 541 - 551
  • [34] Some characterizations of the integrable Teichmller space
    TANG ShuAn
    Science China Mathematics, 2013, 56 (03) : 541 - 551
  • [35] Thurston’s pullback map on the augmented Teichmüller space and applications
    Nikita Selinger
    Inventiones mathematicae, 2012, 189 : 111 - 142
  • [36] On Nonuniqueness of Geodesics in Asymptotic Teichmüller Space
    Guowu Yao
    The Journal of Geometric Analysis, 2017, 27 : 1445 - 1467
  • [37] Filtered screens and augmented Teichmüller space
    Douglas J. LaFountain
    R. C. Penner
    Geometriae Dedicata, 2015, 179 : 303 - 333
  • [38] UNIVERSAL COMMENSURABILITY AUGMENTED TEICHMÜLLER SPACE AND MODULI SPACE
    Hu, Guangming
    Miyachi, Hideki
    Qi, Yi
    ANNALES FENNICI MATHEMATICI, 2021, 46 (02): : 897 - 907
  • [39] Besov Functions and Tangent Space to the Integrable Teichmüller Space
    Shu’an TANG
    Xiaogao FENG
    Yuliang SHEN
    Chinese Annals of Mathematics,Series B, 2018, 39 (06) : 963 - 972
  • [40] Besov Functions and Tangent Space to the Integrable Teichmüller Space
    Shu’an Tang
    Xiaogao Feng
    Yuliang Shen
    Chinese Annals of Mathematics, Series B, 2018, 39 : 963 - 972