On conformal capacity and Teichmüller’s modulus problem in space

被引:0
|
作者
Dimitrios Betsakos
机构
[1] University of Helsinki,Department of Mathematics
来源
关键词
Dimensional Plane; Quasiregular Mapping; Extremal Length; Modulus Problem; Rectilinear Segment;
D O I
暂无
中图分类号
学科分类号
摘要
We solve an extremal problem for the conformal capacity of certain space condensers. The extremal condenser is conformally equivalent to Teichmüller’s ring. As an application, we give a dimension-free estimate for the minimal conformal capacity of the condensers with platesE, F such thata, b ∈ E,c, d ∈ F, wherea, b, c, d are given points in\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline R ^n $$ \end{document}.
引用
收藏
页码:201 / 214
页数:13
相关论文
共 50 条