On the Carathéodory metric of universal Teichmüller space

被引:0
|
作者
Krushkal S.L. [1 ,2 ]
机构
[1] Department of Mathematics, Bar-Ilan University, Ramat Gan
[2] Department of Mathematics, University of Virginia, Charlottesville
关键词
Carathéodory metric; Grunsky inequality; invariant metrics; quasiconformail map; Teichmüller space;
D O I
10.1007/s10958-022-05809-9
中图分类号
学科分类号
摘要
In contrast to finite dimensional Teichmüller spaces, all non-expanding invariant metrics on the universal Teichmüller space coincide. This important fact found various applications. We give its new, simplified proof based on some deep features of the Grunsky operator, which intrinsically relate to the universal Teichmüller space. This approach also yields a quantitative answer to Ahlfors’ question. © 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
引用
收藏
页码:184 / 193
页数:9
相关论文
共 50 条
  • [1] Carathéodory metric on some generalized Teichmüller spaces
    Dong, Xinlong
    Mitra, Sudeb
    [J]. ANNALES FENNICI MATHEMATICI, 2023, 48 (02): : 797 - 807
  • [2] Classifying complex geodesics for the Carathéodory metric on low-dimensional Teichmüller spaces
    Dmitri Gekhtman
    Vladimir Markovic
    [J]. Journal d'Analyse Mathématique, 2020, 140 : 669 - 694
  • [3] Quantization of the universal Teichmüller space
    A. G. Sergeev
    [J]. Proceedings of the Steklov Institute of Mathematics, 2008, 263
  • [4] A BINARY INFINITESIMAL FORM OF TEICHMLLER METRIC AND ANGLES IN AN ASYMPTOTIC TEICHMLLER SPACE
    吴艳
    漆毅
    [J]. Acta Mathematica Scientia(English Series), 2016, 36 (02) : 334 - 344
  • [5] A BINARY INFINITESIMAL FORM OF TEICHMLLER METRIC AND ANGLES IN AN ASYMPTOTIC TEICHMLLER SPACE
    吴艳
    漆毅
    [J]. Acta Mathematica Scientia, 2016, (02) : 334 - 344
  • [6] Maximal surfaces and the universal Teichmüller space
    Francesco Bonsante
    Jean-Marc Schlenker
    [J]. Inventiones mathematicae, 2010, 182 : 279 - 333
  • [7] Bounded combinatorics and the Lipschitz metric on Teichmüller space
    Anna Lenzhen
    Kasra Rafi
    Jing Tao
    [J]. Geometriae Dedicata, 2012, 159 : 353 - 371
  • [8] UNIVERSAL COMMENSURABILITY AUGMENTED TEICHMÜLLER SPACE AND MODULI SPACE
    Hu, Guangming
    Miyachi, Hideki
    Qi, Yi
    [J]. ANNALES FENNICI MATHEMATICI, 2021, 46 (02): : 897 - 907
  • [9] Local rigidity of the Teichmüller space with the Thurston metric
    Huiping Pan
    [J]. Science China Mathematics, 2023, 66 (08) : 1751 - 1766
  • [10] Local rigidity of the Teichmüller space with the Thurston metric
    Huiping Pan
    [J]. Science China Mathematics, 2023, 66 : 1751 - 1766