On the properties of various compactifications of Teichmüller space

被引:0
|
作者
Lixin Liu
Yaozhong Shi
机构
[1] Sun Yat-sen University,
[2] School of Mathematics,undefined
来源
关键词
Teichmüller space; Gardiner–Masur compactification; Teichmüller compactification; Asymptotic visual compactification; 30F60; 32G15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the Gardiner–Masur compactification, the Teichmüller compactification and the asymptotic visual compactification of Teichmüller space. We prove that the Gardiner–Masur compactification is stronger than the Teichmüller compactification. We also prove that the asymptotic visual compactification is independent of the base point. Moreover, we prove that in these three compactifications, the convergences (of a sequence in Teichmüller space) to a same indecomposable measured foliation are equivalent. As an application, we construct some counter examples about the relation between the Gardiner–Masur compactification and the Thurston compactification, and the relation between the Teichmüller compactifications with different base points.
引用
下载
收藏
页码:371 / 391
页数:20
相关论文
共 50 条
  • [1] Teichmüller contraction in the Teichmüller space of a closed set in the sphere
    Sudeb Mitra
    Israel Journal of Mathematics, 2001, 125 : 45 - 51
  • [2] Rigidity of Teichmüller space
    Georgios Daskalopoulos
    Chikako Mese
    Inventiones mathematicae, 2021, 224 : 791 - 916
  • [3] Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space
    Hideki Miyachi
    Geometriae Dedicata, 2008, 137 : 113 - 141
  • [4] On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space
    D. Alessandrini
    L. Liu
    A. Papadopoulos
    W. Su
    Monatshefte für Mathematik, 2016, 179 : 165 - 189
  • [5] Integrable Teichmüller space
    Xueping Liu
    Yuliang Shen
    Mathematische Zeitschrift, 2022, 302 : 2233 - 2251
  • [6] A quantum Teichmüller space
    V. V. Fock
    L. O. Chekhov
    Theoretical and Mathematical Physics, 1999, 120 : 1245 - 1259
  • [7] Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space II
    Hideki Miyachi
    Geometriae Dedicata, 2013, 162 : 283 - 304
  • [8] A BINARY INFINITESIMAL FORM OF TEICHMLLER METRIC AND ANGLES IN AN ASYMPTOTIC TEICHMLLER SPACE
    吴艳
    漆毅
    Acta Mathematica Scientia, 2016, (02) : 334 - 344
  • [9] Comparisons of metrics on Teichmüller space
    Zongliang Sun
    Lixin Liu
    Chinese Annals of Mathematics, Series B, 2010, 31 : 71 - 84
  • [10] Quantization of the universal Teichmüller space
    A. G. Sergeev
    Proceedings of the Steklov Institute of Mathematics, 2008, 263