On the properties of various compactifications of Teichmüller space

被引:0
|
作者
Lixin Liu
Yaozhong Shi
机构
[1] Sun Yat-sen University,
[2] School of Mathematics,undefined
来源
关键词
Teichmüller space; Gardiner–Masur compactification; Teichmüller compactification; Asymptotic visual compactification; 30F60; 32G15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the Gardiner–Masur compactification, the Teichmüller compactification and the asymptotic visual compactification of Teichmüller space. We prove that the Gardiner–Masur compactification is stronger than the Teichmüller compactification. We also prove that the asymptotic visual compactification is independent of the base point. Moreover, we prove that in these three compactifications, the convergences (of a sequence in Teichmüller space) to a same indecomposable measured foliation are equivalent. As an application, we construct some counter examples about the relation between the Gardiner–Masur compactification and the Thurston compactification, and the relation between the Teichmüller compactifications with different base points.
引用
收藏
页码:371 / 391
页数:20
相关论文
共 50 条
  • [31] On the properties of various compactifications of Teichmuller space
    Liu, Lixin
    Shi, Yaozhong
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (02): : 371 - 391
  • [32] UNIVERSAL COMMENSURABILITY AUGMENTED TEICHMÜLLER SPACE AND MODULI SPACE
    Hu, Guangming
    Miyachi, Hideki
    Qi, Yi
    ANNALES FENNICI MATHEMATICI, 2021, 46 (02): : 897 - 907
  • [33] Besov Functions and Tangent Space to the Integrable Teichmüller Space
    Shu’an TANG
    Xiaogao FENG
    Yuliang SHEN
    Chinese Annals of Mathematics,Series B, 2018, 39 (06) : 963 - 972
  • [34] Besov Functions and Tangent Space to the Integrable Teichmüller Space
    Shu’an Tang
    Xiaogao Feng
    Yuliang Shen
    Chinese Annals of Mathematics, Series B, 2018, 39 : 963 - 972
  • [35] On the Carathéodory metric of universal Teichmüller space
    Krushkal S.L.
    Journal of Mathematical Sciences, 2022, 262 (2) : 184 - 193
  • [36] Notes on Univalent Functions and the Universal Teichmüller Space
    沈玉良
    数学进展, 1997, (04) : 48 - 51
  • [37] Energy, Hopf Differential, and Metrics on Teichmüller Space
    Zongliang Sun
    Hui Guo
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1223 - 1231
  • [38] Bounded combinatorics and the Lipschitz metric on Teichmüller space
    Anna Lenzhen
    Kasra Rafi
    Jing Tao
    Geometriae Dedicata, 2012, 159 : 353 - 371
  • [39] Stability of quasi-geodesics in Teichmüller space
    Ursula Hamenstädt
    Geometriae Dedicata, 2010, 146 : 101 - 116
  • [40] Local rigidity of the Teichmüller space with the Thurston metric
    Huiping Pan
    Science China Mathematics, 2023, 66 (08) : 1751 - 1766